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Abstract— In this paper, we demonstrate how methods based
on interval arithmetic and interval analysis can be used to
achieve numerical certification of the kinematic calibration of
a parallel robots. We introduce our work by describing the
usual calibration methods and the motivations for a numerical
certification. Then, we briefly present the interval methods we
used and the kinematic calibration problem. In the main part,
we develop our certified approach of this problem in the case of a
Gough platform, and we show with numerical examples how this
approach avoids wrong solutions produced by classical approach.
Details on implementation and performance are also given.

I. INTRODUCTION

High accuracy of position and orientation is a characteristic
feature of parallel manipulators that makes them appealing in
a lot of applications. However, such an accuracy relies on a
robust and accurate calibration of the physical configuration
of the robot. This is a difficult task from both theoretical and
practical point of view, even if efficiency is not critical as the
calibration may be performed off-line.

A robot’s configuration is related to kinematic parameters
of a robot through the equations of the kinematic model. Cal-
ibration is achieved by measuring several robot configurations
and identifying the corresponding kinematic parameters. For
mathematical reasons, the number of equations given by the
measurements has to be at least as large as the number of
unknown parameters. Since the measurement data are usually
given by a captor, it is necessary to take into account the
noise associated with this device. So in practice, the number
of equations is larger in order to reduce the sensitivity of the
calibration to the uncertainty attached to the data. In this case,
the system of equations to solve is over-constrained.

The classical method to solve such an over-constrained
problem is a least-squares method. But the mere convergence
of this iterative method cannot guarantee that, after calibration,
the accuracy of the robot is improved in the whole workspace.
In practice, post-processing is therefore necessary to validate
the results of such a calibration. Unfortunately, in the case of
Gough platforms, this step is very costly [1].

Some improvements of the least-squares method, providing
a quality index for each solution, have been proposed when a
noise model can be associated with the data uncertainties [2].
That may be done if the distribution of the measurement error
is known (e.g., from the documentation of the captor). But this
noise model may be difficult to obtain – for example when

using mechanical constraints for calibration, or for certain
measurement devices.

Even in the best cases, only probabilistic results are pro-
duced. In this paper we propose a method that gives a certified
approximation in the sense that, for a set of measurements
given with attached uncertainties, we return a list of inter-
vals for the kinematics parameters such that any solution
corresponding to an instance of configuration satisfying the
measurements has to belong to those intervals. This method
is an new version based on interval arithmetic, using interval
analysis of the so-called implicit or inverse calibration method,
the most studied method for the identification of the kinematic
parameters of a parallel robot [3]–[5]).

Extended to a representation of the parameters in terms
of intervals – and to the associated arithmetic (Section II),
the basic system of equations for the kinematic calibration
of Gough platform is developed (Section III). Our algorithm
for obtaining the certified solution of this system is described
in detail in Section IV. A simulation (Section V) producing
certified results reveals that a least-squares method may pro-
vide a result which is not compatible with the corresponding
measurement data.

II. INTERVAL ARITHMETIC

Interval arithmetic, introduced by Moore [6], is based on
the representation of an uncertain variable x as an interval
x = [x, x] representing a (possibly conservative) worst case
estimate of the range of x.

The interval evaluation of a real-valued function
f(x1, . . . , xn) is an interval f(x) = f(x1, . . . ,xn) such
that

f(x1, . . . , xn) ∈ f(x) for all x1 ∈ x1, . . . , xn ∈ xn. (1)

The tightest interval evaluation is the range, but any interval
containing the range of a function is an interval evaluation
of this function. There are numerous ways to calculate an
interval evaluation function [7] which produce more or less
overestimation of the range; controlling the latter is the key to
a successful use of intervals.

The simplest interval evaluation is the natural evaluation,
in which all mathematical operators in an expression for f are
simply substituted by their interval equivalents; the result is
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highly dependent on the symbolic expression used. Another
interesting interval evaluation is the centered form (or linear
Taylor form) defined as follow :

fT (x) = f(x) +A(x− x) (2)

where A = f [x,x] is a suitable n× n interval matrix, called
a slope matrix.

In the following, we use the following notation related to
an interval x = [x, x]: We write inf(x) for x, sup(x) for x,
mid(x) for 1

2
(x+ x) and rad(x) for x− x.

III. KINEMATICS AND CALIBRATION

We are studying a Gough platform as depicted in Figure 1.
This manipulator consists in two rigid bodies, the base and
the mobile platform, connected by 6 legs.

The robot configuration (P,R) is given by a position P and
a rotation matrix R. It is associated to the length variation Li

of each leg measured by an “internal” sensor. The matrix R
is given is terms of Rodrigues parameters (q1, q2, q3), where
(1 + q21 + q22 + q23)R is
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Physically, each leg is attached to the base by a U-joint and
to the platform by a ball joint, and 23 parameters are required
to fully model each leg [8]. But, as shown in [9], the principal
source of errors in positioning is due to the limited knowledge
of the centers of the joints and of the part of the legs’ length
which is not given by the sensors.

We thus use a simpler model with attachment points ai in
the base frame, bi in the mobile frame, and offset lengths li
for the ith leg. This gives 42 parameters, 7 for each leg.

The inverse kinematics model expresses the length of the
ith leg as follows:

‖P +Rbi − ai‖
2
= (Li + li)

2 (3)

In the case of the Gough platform, the exact forward
kinematics model is much harder to compute and unpracticable
for calibration.

For p selected configurations, a measurement device (coor-
dinate measurement machinery, theodolites, . . . ) provides the
position Pk and the orientation Rk. Additionally, the internal
sensor provides the leg lengths Li,k for each configuration.
As the legs are independent with respect to the calibration
problem, we will divide it in 6 subproblems, one for each leg.
We may therefore simplify the notation in the following and
omit the i index.

For each subproblem, we define a vector of parameters x =
(a, b, l), a list of measurements (M1, . . . ,Mp) with Mk =
(Pk, Rk, Lk), and a function f such that:

f(x,Mk) = ‖Pk +Rkb− a‖
2
− (Lk + l)2

From a theoretical point of view the calibration equations
should be:

f(x,Mk) = 0, for k = 1, . . . , p. (4)

The solution of this system in the 7 kinematic parameters
a, b, l is possible if N = 7. Due to the noise in the mea-
surements associated with the captors, those equations are
approximately valid only for the actual kinematic parameters,
and the computed solution of (4) may be significantly different.
To reduce this problem we use more equations than the
minimum required, N > 7.

To solve the over-constrained system, one typically uses
optimization (the analytic Jacobian is given in [4]), or lin-
earization [3], which allows to find a least-squares solution.
As we shall see, interval analysis and constraint programming
techniques offer a useful alternative to those methods.

IV. PROPOSED METHOD

We propose to solve the over-constrained system (4) by
using interval programming methods.

We assume that the uncertain coefficients Mk of the equa-
tion (4) may take all possible values inside an interval of
variation denoted by Mk, and combine these intervals into
the interval vector M. Our goal is to determine the continuum
S(M) of kinematic parameters x satisfying (4),

S(M) = {x|f(x,Mk) = 0 with Mk ∈Mk, k = 1, . . . , p}.
(5)

To determine the set S(M), which generally has a com-
plicated shape, is a difficult problem. But it is possible to
simplify the problem by computing an enclosure of this set by
a box x. If the overestimation is small, x contains all relevant
information about S(M). A visualization of those sets in the
two-dimensional case is given in Figure 2.

In this paper we use a Taylor expension to obtain a linear
appoximation of S(M). (Alternatively, it may be obtained
through the semantics of the equations – see [10].) Then
we use linear programming to compute the extreme values
of this linear approximation. This gives a box x containing
S(M). Using the quadratic approximation results from [11] it
is not difficult to see that if the uncertainties in the Mk is of
the order O(ε) then the size of the resulting box is at most
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O(ε2)larger than the tightest possible box enclosing S(M).
Thus, in practice, the overestimation has little effect on the
quality of the results.

As the linear approximation depends on the initial estimate
used for x, it is necessary to use a fixed point algorithm to
iteratively sharpen the solution set. The iteration terminates
naturally when the bounds of x no longer improved much, i.e.,
when the maximal box width does not decrease significantly
in some iteration step. If desired, we can get a closer approx-
imation of the solution set S(M) by bisecting the computed
box x and restart the iterative process with the two resulting
boxes as initial estimates.

While we tested several interval methods, we present here
only the interval evaluation which provided the sharpest
approximation of S(M). It is particularly adapted to over-
constrained systems of equation. However, since there are
many more possibilities to explore we think that an improved
analysis of the system is possible.

A. Interval Newton Formulation of Implicit Equations

We shall write F (x,M) for the vector valued function with
components Fk(x,M) = f(x,Mk). A centered form interval
extension of F (x,M) performed in two step gives:

f(x,M) = f(x,M)) +A(x,M)(x− x)
= f(x,M)) +B(x,M)(M−M) +A(x,M)(x− x)

(6)
where A and B are the natural interval extension of the iden-
tification Jacobian matrix ∂f(x,M)/∂x resp. ∂f(x,M)/∂M ,
computed from explicit expressions, and where x and M are
selected in x and in M as x = mid(x) and M = mid(M).

We want to determine an enclosure x for the vectors x
such that F (x,M) = 0 for some M ∈ M. Given a trial
enclosure xj (which is guessed for j = 0, we want to use the
information in the centered form to reduce the radius of xj ,
thus producing a better enclosure xj+1. Newton’s method may
be extended to the interval case [7], [11], giving a recipe called
the Newton operator to construct a box Nj(xj ,xj), defined
as an enclosure of all vectors x ∈ xj satisfying the linear
inclusion

A(x−xj) ∈ −f(xj ,M)−B(xj ,M)(M−M) with A ∈ A.
(7)

Then the interval Newton method is defined by

xj+1 := xj ∩Nj(xj , xj). (8)

The interval Newton method is terminated if the size of
the box is no longer substantially decreased by the interval
Newton method, which is tested by a criterion of the form
‖rad(xj)‖1 − ‖rad(xj+1)‖1 < ∆.

There are several ways to solve the linear inclusion (7),
one of which will be presented in next subsection. For details
on properties (convergence, unicity ...) of the interval Newton
method, the reader may consult [11]. There it is shown that,
in particular, no solution of F (x,M) = 0 contained in the
initial trial box x0 can be lost (i.e., lie outside some xj). As
a consequence, if the intersection of xj and Nj(xj , xj) is
empty for some j then, since xj+1 = 0 by (8), there was no
solution in the initial trial box x0. Moreover, if some xj+1 is
in the interior of xj then it is certain that x0 (and hence all
xj) contains for every M ∈ M a solution of F (x,M) = 0.
This makes the interval Newton method an excellent tool for
certified computations.

B. Reformulation as a linear programming problem

We have seen in the previous subsection that the heart of
the proposed method is to solve Eq. 7. A correct presentation
of that problem is to find the set of solutions

Σ(A,b) = {x|Ax = b, A ∈ A, b ∈ b}, (9)

where A is an interval matrix and b is an interval vector. To
determine Σ(A,b) or only the tightest enclosing box is an
NP-hard problem and hence expensive in higher dimensions –
the shape of the set can be quite complicated. But it is possible
to find an enclosure of Σ(A,b) by an interval vector x with
limited overestimation, provided that the intervals are narrow
enough.

Basic interval analysis method suitable for this are precon-
ditioned Gauss elimination and Krawczyk’s method (see [7],
[11]–[13]). We tested an improved algorithm proposed by
Rump [14] based on these methods and implemented in the
package INTLAB given under Matlab. The provided tool,
while highly useful for square systems of equations, is not
adapted to overdetermined problems: though it can solve them,
the enclosure is usually inferior to the method proposed in the
following, which is based on a reformulation of the problem
to a linear programming problem.

The new method consists on two steps: In the first step,
we overestimate Σ(A,b) by a convex polyhedron defined by
scalar linear inequalities. In the second step, we determine by
linear programming (for example the simplex algorithm) the
minimal and the maximal value of each component of points
in the polyhedron. This provides an enclosure x of Σ(A,b).
Again, results from [11] imply that the overestimation is of
higher order, and hence small, if the intervals in the entries of



A and b are narrow. To improve the quality of x the two steps
are repeated until no significant improvement is obtained.

For any matrix A (which we choose as the midpoint of A),
we can use a Krawczyk-type decomposition

Ax− b = (A−A)x− b+Ax

to see that any x ∈ Σ(A,b) satisfies the linear inequalities
Ux ≤ u, where

U =

(

A
−A

)

, u =

(

−inf((A−A).x− b)
sup((A−A).x− b)

)

.

This observation goes back to [15], and gives for narrow
interval coefficients a nearly optimal polyhedral enclosure of
Σ(A,b). We therefore call 2n (n = dim(x)) times a linear
programming solver to solve the problems

xk = min{xk | xk | Ux ≤ u},

xk = max{xk | xk | Ux ≤ u}

for k = 1, . . . , n. This algorithm produces an enclosing box
for Σ(A,b), and hence can be used to define the Newton
operator, and hence the interval Newton iteration discussed in
the previous subsection.

V. APPLICATION AND SIMULATION

In our simulations all geometric parameters of the Left-
Hand robot of INRIA [16] are available. We implemented
in Matlab (with the optimization toolkit and the INTLAB
package [14]) implicit calibration and its certification using
the method just presented. Since our calibration method de-
couples the problem into 6 independent leg calibrations, we
concentrate on the calibration of the first leg. The true values of
the kinematic parameters, denoted by xa, are shown in Table I.

Attachment points [cm] Leg length
Base platform Mobile platform offset [cm]
x y z u v w l

-9.7 9.1 0.0 -3.0 7.3 0.0 52.2496

TABLE I

TRUE KINEMATIC PARAMETERS OF ONE LEG

The xa serve to construct a set of 21 configurations by
solving the equation (3) for L using 21 randomly generated
configurations. In addition to the calculated value of the leg
length, the chosen positions and orientations simulate the
values obtained by a measurement device without errors.
The vector describing the exact measurement is denoted by
Ma = [Ma

1 , . . . ,M
a
21].

The above values xa are perturbed and denoted by xr

to simulate an initial estimation of the kinematic parameters
given, for instance, by the robot constructor. The amplitude
of the uniformly distributed perturbation is equal to +/− 0.1
cm. For the proposed certification method an initial interval
vector x0 is done as x0 = [x

r − 0.1, xr + 0.1].
When all measured quantities are exact:

• the least-square algorithm converges accurately to xa,
• the certification algorithm converges to an interval vector

x
a = [xa − 10−8, xa + 10−8]. Note that 10−8 is the
∆ given in Section IV-A used to terminate the Newton
scheme.

We conclude that both methods provide the exact kinematic
parameters when no errors are associated with measurement.

Now we simulate uniformly distributed noises associated
with measurement devices. The amplitude of the errors are
εP = +/ − 5 µm for position measurement, εL = +/ − 5
µm for leg length measurement. The orientation is modeled
by a normalized vector and an angle. The error on the vector
direction is equal to εv = +/− 5 µm and, on the angle, it is
equal to εa = +/− 10

−3 degree. These simulations permit to
obtain a realistic measurement vector M r. Now the interval
vector M

r = [Mr − ε,Mr + ε] contain the true measurement
Ma. Note that ε is done as a function of εP , εL, εv, εa. The
error εq may be easily deduced from εv and εa to model the
error associated with the 3 Rodrigues parameters.

We apply our proposed algorithm to reduce the width of the
initial estimation x0. We obtain x1 -see Table II, III and IV.

Base attachment points [cm]
x y z

mid rad mid rad mid rad

x0 -9.6609 0.1000 9.0442 0.1000 0.0251 0.1000
x1 -9.6825 0.0784 9.0988 0.0455 0.0041 0.0791
x2 -9.6842 0.0767 9.1011 0.0433 0.0038 0.0788
xs -9.6904 0.0735 9.0978 0.0205 0.0210 0.1895

TABLE II

COMPARISON OF THE RESULT OBTAINED BY INTERVAL METHOD VS.

LEAST-SQUARE METHOD

Mobile attachment points [cm]
u v w

mid rad mid rad mid rad

x0 -3.0468 0.1000 7.2122 0.1000 -0.0334 0.1000
x1 -3.0055 0.0587 7.2937 0.0187 -0.0127 0.0793
x2 -3.0026 0.0558 7.2946 0.0177 -0.0119 0.0786
xs -2.9943 0.0562 7.3002 0.0071 -0.0080 0.0726

TABLE III

COMPARISON OF THE RESULT OBTAINED BY INTERVAL METHOD VS.

LEAST-SQUARE METHOD

We compare this result to the classical least-square method
(a Levenberg-Marquardt algorithm provided by Matlab). To do
this, we choose randomly 1000 measurement vectors [P,R,L]
inside M

r ∩ [Ma − ε,Ma + ε] i.e. that guarantees that the
measurement data are inside the range certificated by the
interval method and not at a distance greater than ε to the exact
measurement Ma. We obtain 1000 solutions to the implicit
calibration problem. The Figure 3 presents these observations
and compares them to the element of the interval vector x1

which corresponds to the offset of the leg length.



Method Offset [cm]
l

mid rad

x0 52.3376 0.1000
x1 52.3164 0.0789
x2 52.3161 0.0787
xs 52.2366 0.1597

TABLE IV

COMPARISON OF THE RESULT OBTAIN THOUGHT INTERVAL METHOD VS

LEAST-SQUARE METHOD
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Fig. 3. Observation of 1000 solutions of the offset of the leg length obtain
for 1000 set of measurement data chosen inside a possible range of variation

The maximum and the minimal values of each components
of the 1000 observations permit to construct an interval vector,
denoted by xs, where all least-square solutions are localized.
The Tables II, III and IV compare x0, x1 and xs. Visually,
the Figure 4 presents this comparison for the base attachment
point (Note that the frame is center in the middle of x0).

For at least 2 kinematic parameters (z and l), the radius
of their components in xs is greater than their equivalent in
x1. Then, some solutions provided by the least square method
(their well convergence have been checked) are outside the
certified enclosure of the exact set of solution provided the
interval method. We may conclude that those special points
are not correct with respect to the noise associated with
measurement. Their certification is not possible.

To improve our result, a possibility is to bisect each compo-
nent of x1 and process the proposed algorithm on each of the
boxes obtained. Many rules for bisection have been tested. We
choose to present the case where the initial box x1 is split into
two parts, 5% away from its inferior. At each bisection step
we test 128 boxes; many of these are eliminated by simple
evaluation using Equation 6 or the proposed algorithm. The
initial box for the next step of bisection is the largest box
obtained in the previous step. This process is repeated for 5%
away from the superior limits the largest box. This ensures
that the boundary of x1 is filtered with priority.

After 4 steps (on superior and inferior bound), the set of
calibration solutions is described by the union of 104 boxes.

X1
Xs

X0

Fig. 4. Visual comparison between x0 x1 and xs for mobile kinematic
parameters x, y, z
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Figure 5 shows that the total volume of these boxes decreases
to a limit. The area of the solution is greatly improved. But if
we compute the smallest box (denoted by x2) which contains
all the 104 boxes, Tables II, III and IV show that the range of
the variables of the improved enclosure x2 is comparable to
x1. This shows that our enclosure method is indeed close to
optimal, and little can be gained by bisection when only the
rangesof the solution set, and not its shape, is of interest.

Regarding the results, we may conclude that some possible
solutions provided by a least-square method do not satisfy the
system of equations 4 for the given range of variation of the
measurement data. The properties of interval arithmetic show
that ”least-square solution” are not included in the exact set
of solutions of the system 4 parameterized by measurements.

VI. CONCLUSION

In this article we presented a method based on interval anal-
ysis that provides a numerically certified result to kinematic
calibration problem of Gough platform.

Even if some further work may have to be done to improve
the interval methods we used, the main contribution of this
work is to provide the first certified method for this problem
and to show that usual methods may produce unrealistic
results.
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