A divergent generating function that can be summed and analysed analytically

Abstract : We study a recurrence relation, originating in combinatorial problems, where the generating function, as a formal power series, satisfies a differential equation that can be solved in a suitable domain; this yields an analytic function in a domain, but the solution is singular at the origin and the generating function has radius of convergence 0. Nevertheless, the solution to the recurrence can be obtained from the analytic solution by finding an asymptotic series expansion. Conversely, the analytic solution can be obtained by summing the generating function by the Borel summation method. This is an explicit example, which we study detail, of a behaviour known to be typical for a large class of holonomic functions. We also express the solution using Bessel functions and Lommel polynomials.
Type de document :
Article dans une revue
Discrete Mathematics and Theoretical Computer Science, DMTCS, 2010, 12 (2), pp.1-22
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00990430
Contributeur : Service Ist Inria Sophia Antipolis-Méditerranée / I3s <>
Soumis le : mardi 13 mai 2014 - 15:36:37
Dernière modification le : mercredi 29 novembre 2017 - 10:26:17
Document(s) archivé(s) le : lundi 10 avril 2017 - 22:07:16

Fichier

1305-4850-1-PB.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00990430, version 1

Collections

Citation

Svante Janson. A divergent generating function that can be summed and analysed analytically. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2010, 12 (2), pp.1-22. 〈hal-00990430〉

Partager

Métriques

Consultations de la notice

76

Téléchargements de fichiers

187