A. Ambainis, A. Nayak, A. Ta-shma, and U. Vazirani, Dense quantum coding and quantum finite automata, Journal of the ACM, vol.49, issue.4, pp.496-511, 2002.
DOI : 10.1145/581771.581773

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Ambainis and J. Watrous, Two-way finite automata with quantum and classical states, Theoretical Computer Science, vol.287, issue.1, pp.299-311, 2002.
DOI : 10.1016/S0304-3975(02)00138-X

A. Bertoni and M. Carpentieri, Regular Languages Accepted by Quantum Automata, Information and Computation, vol.165, issue.2, pp.174-182, 2001.
DOI : 10.1006/inco.2000.2911

C. Dwork and L. Stockmeyer, A Time Complexity Gap for Two-Way Probabilistic Finite-State Automata, SIAM Journal on Computing, vol.19, issue.6, pp.1011-1123, 1990.
DOI : 10.1137/0219069

C. Dwork and L. Stockmeyer, Finite state verifiers I: the power of interaction, Journal of the ACM, vol.39, issue.4, pp.800-828, 1992.
DOI : 10.1145/146585.146599

M. Freivalds and . Karpinski, Lower space bounds for randomized computation, ICALP'94: Proceedings of the 21st International Colloquium on Automata, Languages and Programming, pp.580-592, 1994.
DOI : 10.1007/3-540-58201-0_100

. Freivalds, L. Ozols, and . Man?inska, Improved constructions of mixed state quantum automata [Fre81] R¯ usin¸?usin¸usin¸? s Freivalds. Probabilistic two-way machines, Proceedings of the International Symposium on Mathematical Foundations of Computer ScienceFYS10] R¯ usin¸?usin¸usin¸? s Freivalds, Abuzer Yakary?lmaz, and A. C. Cem Say. A new family of nonstochastic languages. Information Processing Letters, pp.4101923-1931, 1981.

G. Albert, A. Greenberg, and . Weiss, A lower bound for probabilistic algorithms for finite state machines, Journal of Computer and System Sciences, vol.33, issue.1, pp.88-105, 1986.

M. Hirvensalo, Various Aspects of Finite Quantum Automata, DLT'08: Proceedings of the 12th international conference on Developments in Language TheoryKan¸91Kan¸91] J¯ anis Kan¸epsKan¸eps. Stochasticity of the languages acceptable by two-way finite probabilistic automata. Discrete Mathematics and Applications, pp.21-33405, 1991.
DOI : 10.1007/978-3-540-85780-8_2

R. Kan¸epskan¸eps, . Usin¸?usin¸usin¸?, and . Freivalds, Minimal nontrivial space complexity of probabilistic one- way turing machines, In Proceedings on Mathematical Foundations of Computer Science Lecture Notes in Computer Science, vol.452, pp.355-361, 1990.
DOI : 10.1007/BFb0029629

A. Kondacs and J. Watrous, On the power of quantum finite state automata, Proceedings 38th Annual Symposium on Foundations of Computer Science, pp.66-75, 1997.
DOI : 10.1109/SFCS.1997.646094

L. Lelde, Oksana Scegulnaja-Dubrovska, and R¯ usin¸?usin¸usin¸? s Freivalds. Languages recognizable by quantum finite automata with cut-point 0, SOFSEM'09: Proceedings of the 35th International Conference on Current Trends in Theory and Practice of Computer Science, pp.35-46, 2009.

I. Macarie, Closure properties of stochastic languages, 1993.

K. Paschen, Quantum finite automata using ancilla qubits, 2000.

A. Paz, Introduction to Probabilistic Automata, 1971.

M. Sipser, Introduction to the Theory of Computation, ACM SIGACT News, vol.27, issue.1, 2006.
DOI : 10.1145/230514.571645

P. Turakainen, On languages representable in rational probabilistic automata, Annales Academiae Scientiarum Fennicae Series A I Mathematica, vol.1969, issue.439, pp.4-10, 1969.
DOI : 10.5186/aasfm.1969.439

[. Watrous, On the power of 2-way quantum finite state automata, 1997.

J. Watrous, Space-bounded quantum computation, 1998.
DOI : 10.1006/jcss.1999.1655

URL : http://doi.org/10.1006/jcss.1999.1655

A. Yakary?lmaz and A. C. Say, Languages recognized by nondeterministic quantum finite automata. Quantum Information and Computation. (To Appear) (Also available at arXiv:0902, 2081.

A. Yakary?lmaz and A. C. Say, Efficient probability amplification in two-way quantum finite automata, Theoretical Computer Science, vol.410, issue.20, pp.1932-1941, 2009.
DOI : 10.1016/j.tcs.2009.01.029

A. Yakary?lmaz and A. C. Say, Languages Recognized with Unbounded Error by Quantum Finite Automata, CSR'09: Proceedings of the Fourth International Computer Science Symposium in Russia, pp.356-367, 2009.
DOI : 10.1006/jcss.1999.1655

A. Yakary?lmaz and A. C. Say, Unbounded-error quantum computation with small space bounds. in preparation, 2010.