A. Aberkane and J. Currie, There exist binary circular 5/2 + power free words of every length, Electron . J. Combinatorics, vol.11, p.10, 2004.

J. Allouche and J. Shallit, Automatic Sequences: Theory, 2003.
DOI : 10.1017/CBO9780511546563

J. Berstel, Mots sans carre et morphismes iteres, Discrete Mathematics, vol.29, issue.3, pp.235-244, 1980.
DOI : 10.1016/0012-365X(80)90151-X

URL : https://hal.archives-ouvertes.fr/hal-00619354

J. Berstel, Axel Thue's work on repetitions in words, Séries formelles et combinatoire algébrique, pp.65-80, 1992.

S. Brlek, Enumeration of factors in the Thue-Morse word, Discrete Applied Mathematics, vol.24, issue.1-3, pp.83-96, 1989.
DOI : 10.1016/0166-218X(92)90274-E

F. Brandenburg, Uniformly growing k-th power-free homomorphisms, Theoretical Computer Science, vol.23, issue.1, pp.69-82, 1983.
DOI : 10.1016/0304-3975(88)90009-6

J. Currie and N. Rampersad, Infinite words containing squares at every position, RAIRO - Theoretical Informatics and Applications, vol.44, issue.1, pp.113-124, 2010.
DOI : 10.1051/ita/2010007

J. Currie, N. Rampersad, and J. Shallit, Binary words containing infinitely many overlaps, Electron. J. Combinatorics, vol.13, p.82, 2006.

F. M. Dekking, On repetitions of blocks in binary sequences, Journal of Combinatorial Theory, Series A, vol.20, issue.3, pp.292-299, 1976.
DOI : 10.1016/0097-3165(76)90023-6

A. Ehrenfeucht and G. Rozenberg, On the subword complexity of square-free DOL languages, Theoretical Computer Science, vol.16, issue.1, pp.25-32, 1981.
DOI : 10.1016/0304-3975(81)90028-1

A. Ehrenfeucht and G. Rozenberg, On the subword complexity of m-free D0L languages, Information Processing Letters, vol.17, issue.3, pp.121-124, 1983.
DOI : 10.1016/0020-0190(83)90050-9

A. Ehrenfeucht and G. Rozenberg, On the size of the alphabet and the subword complexity of square-free DOI languages, Semigroup Forum, vol.1, issue.1, pp.215-223, 1983.
DOI : 10.1007/BF02572832

J. Pansiot, The morse sequence and iterated morphisms, Information Processing Letters, vol.12, issue.2, pp.68-70, 1981.
DOI : 10.1016/0020-0190(81)90004-1

N. Rampersad, J. Shallit, and M. Wang, Avoiding large squares in infinite binary words, Theoretical Computer Science, vol.339, issue.1, pp.19-34, 2005.
DOI : 10.1016/j.tcs.2005.01.005

J. Shallit, SIMULTANEOUS AVOIDANCE OF LARGE SQUARES AND FRACTIONAL POWERS IN INFINITE BINARY WORDS, International Journal of Foundations of Computer Science, vol.15, issue.02, pp.317-327, 2004.
DOI : 10.1142/S0129054104002443

R. Shelton and R. Soni, Chains and fixing blocks in irreducible binary sequences, Discrete Mathematics, vol.54, issue.1, pp.93-99, 1985.
DOI : 10.1016/0012-365X(85)90065-2

]. A. Thue, ¨ Uber die gegenseitige Lage gleicher Teile gewisser Zeichenreihen