D. Aldous and P. Shields, A diffusion limit for a class of randomly-growing binary trees. Probab. Theory Related Fields, pp.509-542, 1988.

Z. Bai, H. Hwang, W. Liang, and T. Tsai, Limit Theorems for the Number of Maxima in Random Samples from Planar Regions, Electronic Journal of Probability, vol.6, issue.0, p.41, 2001.
DOI : 10.1214/EJP.v6-76

B. C. Berndt, Ramanujan's notebooks. Part I, 1985.

M. G. Blum, O. François, and S. Janson, The mean, variance and limiting distribution of two statistics sensitive to phylogenetic tree balance, The Annals of Applied Probability, vol.16, issue.4, pp.2195-2214, 2006.
DOI : 10.1214/105051606000000547

R. M. Bradley and P. N. Strenski, Directed aggregation on the Bethe lattice: Scaling, mappings, and universality, Physical Review B, vol.31, issue.7, pp.314319-4328, 1985.
DOI : 10.1103/PhysRevB.31.4319

W. Chen and H. Hwang, Analysis in distribution of two randomized algorithms for finding the maximum in a??broadcast communication model, Journal of Algorithms, vol.46, issue.2, pp.140-177, 2003.
DOI : 10.1016/S0196-6774(02)00293-6

H. Chern, M. Fuchs, and H. Hwang, Phase changes in random point quadtrees, ACM Transactions on Algorithms, vol.3, issue.2, p.51, 2007.
DOI : 10.1145/1240233.1240235

H. Chern, H. Hwang, and T. Tsai, An asymptotic theory for Cauchy???Euler differential equations with applications to the analysis of algorithms, Journal of Algorithms, vol.44, issue.1, pp.177-225, 2002.
DOI : 10.1016/S0196-6774(02)00208-0

E. G. Coffman, J. , and J. Eve, File structures using hashing functions, Communications of the ACM, vol.13, issue.7, pp.427-432, 1970.
DOI : 10.1145/362686.362693

D. S. Dean and S. N. Majumdar, Phase Transition in a Generalized Eden Growth Model on a Tree, Journal of Statistical Physics, vol.195, issue.2, pp.1351-1376, 2006.
DOI : 10.1007/s10955-006-9193-9

URL : https://hal.archives-ouvertes.fr/hal-00116755

F. Dennert and R. Grübel, Renewals for exponentially increasing lifetimes, with an application to digital search trees, The Annals of Applied Probability, vol.17, issue.2, pp.676-687, 2007.
DOI : 10.1214/105051606000000862

L. Devroye, A Study of Trie-Like Structures Under the Density Model, The Annals of Applied Probability, vol.2, issue.2, pp.402-434, 1992.
DOI : 10.1214/aoap/1177005709

L. Devroye, Universal Limit Laws for Depths in Random Trees, SIAM Journal on Computing, vol.28, issue.2, pp.409-432, 1999.
DOI : 10.1137/S0097539795283954

M. Drmota, The variance of the height of digital search trees, Acta Informatica, vol.38, issue.4, pp.261-276, 2002.
DOI : 10.1007/s236-002-8034-5

M. Drmota, Random trees. SpringerWienNewYork, Vienna, 2009. An interplay between combinatorics and probability
URL : https://hal.archives-ouvertes.fr/inria-00001281

M. Drmota, B. Gittenberger, A. Panholzer, H. Prodinger, and M. D. Ward, On the shape of the fringe of various types of random trees, Mathematical Methods in the Applied Sciences, vol.66, issue.5, pp.1207-1245, 2009.
DOI : 10.1002/mma.1085

M. Drmota and W. Szpankowski, (Un)Expected Behavior of Digital Search Tree Profile, SODA, pp.130-138, 2009.
DOI : 10.1137/1.9781611973068.15

G. Fayolle, P. Flajolet, and M. Hofri, On a functional equation arising in the analysis of a protocol for a multi-access broadcast channel, Advances in Applied Probability, vol.19, issue.02, pp.441-472, 1986.
DOI : 10.1109/TIT.1985.1057014

URL : https://hal.archives-ouvertes.fr/inria-00076429

R. A. Fisher, XV.???The Correlation between Relatives on the Supposition of Mendelian Inheritance., Transactions of the Royal Society of Edinburgh, vol.ii, issue.02, pp.399-433, 1918.
DOI : 10.1017/S0080456800012163

P. Flajolet, Singularity analysis and asymptotics of Bernoulli sums, Theoretical Computer Science, vol.215, issue.1-2, pp.371-381, 1999.
DOI : 10.1016/S0304-3975(98)00220-5

URL : https://hal.archives-ouvertes.fr/inria-00073289

P. Flajolet, X. Gourdon, and P. Dumas, Mellin transforms and asymptotics: Harmonic sums, Theoretical Computer Science, vol.144, issue.1-2, pp.3-58, 1995.
DOI : 10.1016/0304-3975(95)00002-E

URL : https://hal.archives-ouvertes.fr/inria-00074307

P. Flajolet and A. Odlyzko, Singularity Analysis of Generating Functions, SIAM Journal on Discrete Mathematics, vol.3, issue.2, pp.216-240, 1990.
DOI : 10.1137/0403019

URL : https://hal.archives-ouvertes.fr/inria-00075725

P. Flajolet and B. Richmond, Generalized digital trees and their difference-differential equations. Random Structures Algorithms, pp.305-320, 1992.
URL : https://hal.archives-ouvertes.fr/inria-00075137

P. Flajolet and N. Saheb, The complexity of generating an exponentially distributed variate, Journal of Algorithms, vol.7, issue.4, pp.463-488, 1986.
DOI : 10.1016/0196-6774(86)90014-3

URL : https://hal.archives-ouvertes.fr/inria-00076400

P. Flajolet and R. Sedgewick, Digital Search Trees Revisited, SIAM Journal on Computing, vol.15, issue.3, pp.748-767, 1986.
DOI : 10.1137/0215054

URL : https://hal.archives-ouvertes.fr/inria-00076246

P. Flajolet and R. Sedgewick, Mellin transforms and asymptotics: Finite differences and Rice's integrals, Theoretical Computer Science, vol.144, issue.1-2, pp.101-124, 1995.
DOI : 10.1016/0304-3975(94)00281-M

P. Flajolet and R. Sedgewick, Analytic combinatorics, 2009.
DOI : 10.1017/CBO9780511801655

URL : https://hal.archives-ouvertes.fr/inria-00072739

A. Hald, On the history of series expansions of frequency functions and sampling distributions Matematisk-Fysiske Meddelelser. 49. Copenhagen: The Royal Danish Academy of Sciences and Letters, pp.1873-1944, 2002.

F. Hubalek, On the variance of the internal path length of generalized digital trees ??? The Mellin convolution approach, Theoretical Computer Science, vol.242, issue.1-2, pp.143-168, 2000.
DOI : 10.1016/S0304-3975(98)00213-8

F. Hubalek, H. Hwang, W. Lew, H. Mahmoud, and H. Prodinger, A multivariate view of random bucket digital search trees, Journal of Algorithms, vol.44, issue.1, pp.121-158, 2002.
DOI : 10.1016/S0196-6774(02)00210-9

H. Hwang, On Convergence Rates in the Central Limit Theorems for Combinatorial Structures, European Journal of Combinatorics, vol.19, issue.3, pp.329-343, 1998.
DOI : 10.1006/eujc.1997.0179

P. Jacquet and E. Merle, Analysis of a stack algorithm for CSMA-CD random length packet communication, IEEE Transactions on Information Theory, vol.36, issue.2, pp.420-426, 1990.
DOI : 10.1109/18.52494

P. Jacquet and M. Régnier, Normal limiting distribution of the size of tries, Performance'87, pp.209-223, 1987.
URL : https://hal.archives-ouvertes.fr/inria-00075724

P. Jacquet and W. Szpankowski, Asymptotic behavior of the Lempel-Ziv parsing scheme and digital search trees, Theoretical Computer Science, vol.144, issue.1-2, pp.161-197, 1995.
DOI : 10.1016/0304-3975(94)00298-W

P. Jacquet and W. Szpankowski, Analytical depoissonization and its applications, Theoretical Computer Science, vol.201, issue.1-2, pp.1-62, 1998.
DOI : 10.1016/S0304-3975(97)00167-9

P. Jacquet, W. Szpankowski, and J. Tang, Average profile of the Lempel-Ziv parsing scheme for a Markovian source Mathematical analysis of algorithms, Algorithmica, issue.3, pp.31318-360, 2001.

S. Janson, Rounding of continuous random variables and oscillatory asymptotics, The Annals of Probability, vol.34, issue.5, pp.1807-1826, 2006.
DOI : 10.1214/009117906000000232

P. Kirschenhofer and H. Prodinger, Eine Anwendung der Theorie der Modulfunktionen in der Informatik, ¨ Osterreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II, vol.197, pp.4-7339, 1988.

P. Kirschenhofer and H. Prodinger, Further results on digital search trees, Thirteenth International Colloquium on Automata, Languages and Programming, pp.143-154, 1986.
DOI : 10.1016/0304-3975(88)90023-0

P. Kirschenhofer and H. Prodinger, On some applications of formulae of Ramanujan in the analysis of algorithms, Mathematika, vol.2, issue.01, pp.14-33, 1991.
DOI : 10.1016/0304-3975(79)90009-4

P. Kirschenhofer, H. Prodinger, and W. Szpankowski, Digital Search Trees Again Revisited: The Internal Path Length Perspective, SIAM Journal on Computing, vol.23, issue.3, pp.598-616, 1994.
DOI : 10.1137/S0097539790189368

C. Knessl and W. Szpankowski, Asymptotic Behavior of the Height in a Digital Search Tree and the Longest Phrase of the Lempel--Ziv Scheme, SIAM Journal on Computing, vol.30, issue.3, pp.923-964, 2000.
DOI : 10.1137/S0097539799356812

D. E. Knuth, The art of computer programming Sorting and searching, 1998.

A. G. Konheim and D. J. Newman, A note on growing binary trees, Discrete Mathematics, vol.4, issue.1, pp.57-63, 1973.
DOI : 10.1016/0012-365X(73)90114-3

G. Louchard, Exact and asymptotic distributions in digital and binary search trees, RAIRO - Theoretical Informatics and Applications, vol.21, issue.4, pp.479-495, 1987.
DOI : 10.1051/ita/1987210404791

G. Louchard, Digital search trees revisited, Cahiers Centré Etudes Rech. Opér, vol.36, pp.259-278, 1994.

G. Louchard and W. Szpankowski, Average profile and limiting distribution for a phrase size in the Lempel-Ziv parsing algorithm, IEEE Transactions on Information Theory, vol.41, issue.2, pp.478-488, 1995.
DOI : 10.1109/18.370149

G. Louchard, W. Szpankowski, and J. Tang, Average Profile of the Generalized Digital Search Tree and the Generalized Lempel--Ziv Algorithm, SIAM Journal on Computing, vol.28, issue.3, pp.904-934, 1999.
DOI : 10.1137/S0097539796301811

H. M. Mahmoud, Evolution of random search trees Wiley-Interscience Series in Discrete Mathematics and Optimization, 1992.

R. Neininger, On a multivariate contraction method for random recursive structures with applications to Quicksort, Random Structures and Algorithms, vol.25, issue.3-4, pp.3-4498, 2000.
DOI : 10.1002/rsa.10010

R. Neininger and L. Rüschendorf, A general limit theorem for recursive algorithms and combinatorial structures, Ann. Appl. Probab, vol.14, issue.1, pp.378-418, 2004.

R. Neininger and L. Rüschendorf, A survey of multivariate aspects of the contraction method, Discrete Math. Theor. Comput. Sci, vol.8, issue.1, pp.31-56, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00961114

F. W. Olver, Asymptotics and special functions, Computer Science and Applied Mathematics, 1974.

H. Prodinger, External Internal Nodes in Digital Search Trees via Mellin Transforms, SIAM Journal on Computing, vol.21, issue.6, pp.1180-1183, 1992.
DOI : 10.1137/0221069

H. Prodinger, Hypothetical analyses: approximate counting in the style of Knuth, path length in the style of Flajolet, Theoretical Computer Science, vol.100, issue.1, pp.243-251, 1992.
DOI : 10.1016/0304-3975(92)90371-L

W. Schachinger, On the variance of a class of inductive valuations of data structures for digital search, Theoretical Computer Science, vol.144, issue.1-2, pp.251-275, 1995.
DOI : 10.1016/0304-3975(94)00306-4

W. Schachinger, Asymptotic normality of recursive algorithms via martingale difference arrays, Discrete Math. Theor. Comput. Sci, vol.4, issue.2, pp.363-397, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00958968

W. Szpankowski, The evaluation of an alternative sum with applications to the analysis of some data structures, Information Processing Letters, vol.28, issue.1, pp.13-19, 1988.
DOI : 10.1016/0020-0190(88)90137-8

W. Szpankowski, A characterization of digital search trees from the successful search viewpoint, Theoretical Computer Science, vol.85, issue.1, pp.117-134, 1991.
DOI : 10.1016/0304-3975(91)90050-C

W. Szpankowski, Average case analysis of algorithms on sequences Wiley-Interscience Series in Discrete Mathematics and Optimization, 2001.

E. T. Whittaker and G. N. Watson, A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions. Cambridge Mathematical Library, 1927.