Some properties of semiregular cages

Abstract : A graph with degree set \r, r + 1\ is said to be semiregular. A semiregular cage is a semiregular graph with given girth g and the least possible order. First, an upper bound on the diameter of semiregular graphs with girth g and order close enough to the minimum possible value is given in this work. As a consequence, these graphs are proved to be maximally connected when the girth g >= 7 is odd. Moreover an upper bound for the order of semiregular cages is given and, as an application, every semiregular cage with degree set \r, r + 1\ is proved to be maximally connected for g is an element of \6, 8\, and when g = 12 for r >= 7 and r not equal 20. Finally it is also shown that every (\r, r + 1\; g)-cage is 3-connected.
Type de document :
Article dans une revue
Discrete Mathematics and Theoretical Computer Science, DMTCS, 2010, 12 (5), pp.125-138
Liste complète des métadonnées

Littérature citée [28 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00990460
Contributeur : Service Ist Inria Sophia Antipolis-Méditerranée / I3s <>
Soumis le : mardi 13 mai 2014 - 15:37:39
Dernière modification le : mercredi 29 novembre 2017 - 10:26:17
Document(s) archivé(s) le : lundi 10 avril 2017 - 22:19:44

Fichier

1100-5799-3-PB.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00990460, version 1

Collections

Citation

Camino Balbuena, Xavier Marcote, Diego Gonzalez-Moreno. Some properties of semiregular cages. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2010, 12 (5), pp.125-138. 〈hal-00990460〉

Partager

Métriques

Consultations de la notice

134

Téléchargements de fichiers

143