M. Abreu, M. Funk, D. Labbate, and V. Napolitano, On (minimal) regular graphs of girth 6, Australasian Journal of Combinatorics, vol.35, pp.119-132, 2006.

G. Araujo-pardo and C. Balbuena, Constructions of small regular bipartite graphs of girth 6, Networks, vol.9, 2010.
DOI : 10.1002/net.20392

G. Araujo-pardo, C. Balbuena, and T. Héger, Finding small regular graphs of girth 6, 8 and 12 as subgraphs of cages, Discrete Math, pp.310-1301, 2010.

G. Araujo, C. Balbuena, P. García-vázquez, X. Marcote, and J. C. Valenzuela, On the order of ({r, m}, g)-cages of even girth, Discrete Math, pp.2484-2491, 2008.

G. Araujo-pardo, C. Balbuena, and J. C. Valenzuela, Constructions of bi-regular cages, Discrete Math, pp.1409-1416, 2009.

C. Balbuena, Incidence Matrices of Projective Planes and of Some Regular Bipartite Graphs of Girth 6 with Few Vertices, SIAM Journal on Discrete Mathematics, vol.22, issue.4, pp.1351-1363, 2008.
DOI : 10.1137/070688225

C. Balbuena, A construction of small regular graphs of girth 8, Discrete Math, Theor. Comput. Sci, vol.11, issue.2, pp.33-46, 2009.

C. Balbuena, P. García-vázquez, and X. Marcote, Sufficient conditions for ? -optimality in graphs with girth g, J. Graph Theory, vol.53, issue.1, pp.73-86, 2006.

C. Balbuena, D. González-moreno, and X. Marcote, On the connectivity of semiregular cages, Networks, vol.10, issue.1, pp.81-88, 2010.
DOI : 10.1002/net.20349

C. Balbuena and X. Marcote, )-cages, International Journal of Computer Mathematics, vol.64, issue.7, 2010.
DOI : 10.1016/S0012-365X(02)00758-6

C. Balbuena and X. Marcote, Monotonicity of the order of (D; g)-cages

G. Chartrand, R. J. Gould, and S. F. Kapoor, Graphs with prescribed degree set and girth, Period Math, Hungar, vol.6, pp.261-266, 1981.

G. Chartrand and L. Lesniak, Graphs and digraphs, 1996.

P. Dusart, The $k^{th}$ prime is greater than $k(\ln k + \ln\ln k-1)$ for $k\geq 2$, Mathematics of Computation, vol.68, issue.225, pp.411-415, 1999.
DOI : 10.1090/S0025-5718-99-01037-6

P. Erd?-os and H. Sachs, Reguläre Graphen gegebener Taillenweite mit minimaler Knotenzahl, Wiss. Z. Univ. Halle Math.-Nat. XII, vol.3, pp.12-251, 1963.

G. Exoo and R. Jajcay, Dynamic cage survey, Electron J Combin, vol.15, p.16, 2008.

A. Gács and T. Héger, On geometric constructions of (k, g)-graphs, Contributions to Discrete Mathematics, vol.3, issue.1, pp.63-80, 2008.

D. Hanson, P. Wang, and L. K. Jorgensen, On cages with given degree sets, Discrete Math, pp.109-114, 1992.

A. J. Hoffman and R. R. Singleton, On Moore Graphs with Diameters 2 and 3, IBM Journal of Research and Development, vol.4, issue.5, pp.497-504, 1960.
DOI : 10.1147/rd.45.0497

D. A. Holton and J. Sheehan, The Petersen graph, Chapter 6: Cages, 1993.

S. F. Kapoor, A. D. Polimeni, and C. E. Wall, Degree sets for graphs, Fund, Math, pp.95-189, 1977.

F. Lazebnik, V. A. Ustimenko, and A. J. Woldar, New upper bounds on the order of cages, Electronic Journal of Combinatorics, pp.14-27, 1997.

N. B. Limaye and D. G. Sarvate, (D; n)-cages with |D| = 2, 3, 4, Congr, Numer, vol.133, pp.7-20, 1998.

X. Marcote, C. Balbuena, and I. Pelayo, On the connectivity of cages with girth five, six and eight, Discrete Math, pp.1441-1446, 2007.

T. Soneoka, H. Nakada, M. Imase, and C. Peyrat, Sufficient conditions for maximally connected dense graphs, Discrete Math, pp.53-66, 1987.
DOI : 10.1016/0012-365x(87)90151-8

URL : http://doi.org/10.1016/0012-365x(87)90151-8

W. T. Tutte, A family of cubical graphs, Proc. Cambridge Phil. Soc, pp.459-474, 1947.
DOI : 10.1017/S0305004100023720

P. K. Wong and C. Survey, Cages???a survey, Journal of Graph Theory, vol.16, issue.1, pp.1-22, 1982.
DOI : 10.1002/jgt.3190060103

Y. Yuansheng and W. Liang, The minimum number of vertices with girth 6 and degree set D = {r, m}, Discrete Math, pp.249-258, 2003.