. Tab, The values L(r, µ) rounded to the 3rd decimal for 1 ? r ? µ, 1 ? µ ? 9. Here L(r, µ) figures in the rth position of the µth row of the array Hence equality holds for k = 1. To see that (6.15) is the only non-trivial value

D. References, O. Aldous, N. Angel, and . Berestycki, Online random weight minimal spanning trees and a stochastic coalescent, 2008.

Y. M. Baryshnikov and A. V. Gnedin, Sequential selection of an increasing sequence from a mutidimensional random sample, Ann. of Appl. Prob, vol.10, issue.1, pp.258-267, 2000.

F. T. Bruss and F. Delbaen, Optimal rules for the sequential selection of monotone subsequences of maximum expected length. Stoch. Processes and Th, Applic, issue.96, pp.313-342, 2001.

F. T. Bruss and T. S. Ferguson, Maximizing the expected rank with full information, J. Appl. Prob, issue.30, pp.616-626, 1993.

F. T. Bruss and T. S. Ferguson, Multiple buying and selling with vector offers, J. Appl. Prob, issue.34, pp.959-973, 1997.

F. T. Bruss, M. Drmota, and G. Louchard, The Complete Solution of the Competitive Rank Selection Problem, Algorithmica, vol.22, issue.4, pp.413-447, 1998.
DOI : 10.1007/PL00009232

R. W. Chen, V. N. Nair, A. M. Odlyzko, L. A. Shepp, and Y. Vardi, Optimal Sequential selection of n random variables under a constraint, Journal of Applied Probability, vol.15, issue.03, pp.537-547, 1984.
DOI : 10.1007/BF02759948

E. G. Enns and E. Ferenstein, The horse game, J. Oper. Res. Soc. Japan, vol.28, pp.51-62, 1985.

A. V. Gnedin, Sequential selection of an increasing subsequence from a random sample with geometically distributed sample size, Lect. Notes IMS -Monograph Series, vol.35, pp.101-109, 2000.

H. Grauert and W. Fischer, Differential-und Integralrechnung II, 1968.

A. Kurushima and K. Ano, Maximizing the expected duration of owning a relatively best object in a poisson process with rankable observations, J. Appl. Probab, vol.46, issue.2, pp.402-414, 2009.

D. Lebek and K. Szajowski, Optimal strategies in high risk investments, Bull. Belg. Math. Soc, vol.14, issue.1, pp.143-155, 2007.

J. Macqueen and R. G. Miller, Optimal Persistence Policies, Operations Research, vol.8, issue.3, pp.363-380, 1960.
DOI : 10.1287/opre.8.3.362

V. V. Mazalov and M. Tamaki, An Explicit Formula for the Optimal Gain in the Full-Information Problem of Owning a Relatively Best Object, Journal of Applied Probability, vol.17, issue.01, pp.87-101, 2006.
DOI : 10.1239/aap/1086957578

L. Moser, On a problem of cayley, Scripta Math, issue.22, pp.289-292, 1956.

S. M. Samuels, Secretary problems. Handbook of Sequential Analysis, pp.381-405, 1990.

S. M. Samuels and J. M. Steele, Optimal Sequential Selection of a Monotone Sequence From a Random Sample, The Annals of Probability, vol.9, issue.6, pp.937-947, 1981.
DOI : 10.1214/aop/1176994265

W. Stadje, A full information pricing problem for the sale of several identical commodities, ZOR Zeitschrift f???r Operations Research Methods and Models of Operations Research, vol.23, issue.3, pp.161-181, 1990.
DOI : 10.1007/BF01415979

M. Tamaki, A full-information best-choice problem with finite memory, Journal of Applied Probability, vol.20, issue.03, pp.718-735, 1986.
DOI : 10.1080/01621459.1966.10502008