On the metric dimension of Grassmann graphs

Abstract : The metric dimension of a graph Gamma is the least number of vertices in a set with the property that the list of distances from any vertex to those in the set uniquely identifies that vertex. We consider the Grassmann graph G(q)(n, k) (whose vertices are the k-subspaces of F-q(n), and are adjacent if they intersect in a (k 1)-subspace) for k \textgreater= 2. We find an upper bound on its metric dimension, which is equal to the number of 1-dimensional subspaces of F-q(n). We also give a construction of a resolving set of this size in the case where k + 1 divides n, and a related construction in other cases.
Type de document :
Article dans une revue
Discrete Mathematics and Theoretical Computer Science, DMTCS, 2012, Vol. 13 no. 4 (4), pp.97--104
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00990476
Contributeur : Service Ist Inria Sophia Antipolis-Méditerranée / I3s <>
Soumis le : mardi 13 mai 2014 - 15:38:59
Dernière modification le : vendredi 24 août 2018 - 11:18:01
Document(s) archivé(s) le : lundi 10 avril 2017 - 22:06:55

Fichier

2049-6715-1-PB.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00990476, version 1

Collections

Citation

Robert F. Bailey, Karen Meagher. On the metric dimension of Grassmann graphs. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2012, Vol. 13 no. 4 (4), pp.97--104. 〈hal-00990476〉

Partager

Métriques

Consultations de la notice

58

Téléchargements de fichiers

730