The largest singletons in weighted set partitions and its applications

Abstract : Recently, Deutsch and Elizalde studied the largest fixed points of permutations. Motivated by their work, we consider the analogous problems in weighted set partitions. Let A (n,k) (t) denote the total weight of partitions on [n + 1] = \1,2,..., n + 1\ with the largest singleton \k + 1\. In this paper, explicit formulas for A (n,k) (t) and many combinatorial identities involving A (n,k) (t) are obtained by umbral operators and combinatorial methods. In particular, the permutation case leads to an identity related to tree enumerations, namely, [GRAPHICS] where D-k is the number of permutations of [k] with no fixed points.
Type de document :
Article dans une revue
Discrete Mathematics and Theoretical Computer Science, DMTCS, 2011, Vol. 13 no. 3 (3), pp.75--86
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00990479
Contributeur : Service Ist Inria Sophia Antipolis-Méditerranée / I3s <>
Soumis le : mardi 13 mai 2014 - 15:39:04
Dernière modification le : jeudi 7 septembre 2017 - 01:03:39
Document(s) archivé(s) le : lundi 10 avril 2017 - 22:21:31

Fichier

1766-6688-1-PB.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00990479, version 1

Collections

Citation

Yidong Sun, Yanjie Xu. The largest singletons in weighted set partitions and its applications. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2011, Vol. 13 no. 3 (3), pp.75--86. 〈hal-00990479〉

Partager

Métriques

Consultations de la notice

47

Téléchargements de fichiers

140