On the minimal distance of a polynomial code

Abstract : For a polynomial f(x) is an element of Z(2)[x] it is natural to consider the near-ring code generated by the polynomials f circle x, f circle x(2) ,..., f circle x(k) as a vectorspace. It is a 19 year old conjecture of Gunter Pilz that for the polynomial f (x) - x(n) broken vertical bar x(n-1) broken vertical bar ... broken vertical bar x the minimal distance of this code is n. The conjecture is equivalent to the following purely number theoretical problem. Let (m) under bar = \1, 2 ,..., m\ and A subset of N be an arbitrary finite subset of N. Show that the number of products that occur odd many times in (n) under bar. A is at least n. Pilz also formulated the conjecture for the special case when A = (k) under bar. We show that for A = (k) under bar the conjecture holds and that the minimal distance of the code is at least n/(log n)(0.223). While proving the case A = (k) under bar we use different number theoretical methods depending on the size of k (respect to n). Furthermore, we apply several estimates on the distribution of primes.
Type de document :
Article dans une revue
Discrete Mathematics and Theoretical Computer Science, DMTCS, 2011, Vol. 13 no. 4 (4), pp.33--43
Liste complète des métadonnées

Littérature citée [7 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00990488
Contributeur : Service Ist Inria Sophia Antipolis-Méditerranée / I3s <>
Soumis le : mardi 13 mai 2014 - 15:39:19
Dernière modification le : jeudi 7 septembre 2017 - 01:03:39
Document(s) archivé(s) le : lundi 10 avril 2017 - 22:14:15

Fichier

2053-6596-1-PB.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00990488, version 1

Collections

Citation

Peter Pal Pach, Csaba Szabo. On the minimal distance of a polynomial code. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2011, Vol. 13 no. 4 (4), pp.33--43. 〈hal-00990488〉

Partager

Métriques

Consultations de la notice

77

Téléchargements de fichiers

175