Irregular edge coloring of 2-regular graphs

Abstract : Let G be a simple graph and let us color its edges so that the multisets of colors around each vertex are distinct. The smallest number of colors for which such a coloring exists is called the irregular coloring number of G and is denoted by c(G). We determine the exact value of the irregular coloring number for almost all 2-regular graphs. The results obtained provide new examples demonstrating that a conjecture by Burris is false. As another consequence, we also determine the value of a graph invariant called the point distinguishing index (where sets, instead of multisets, are required to be distinct) for the same family of graphs.
Type de document :
Article dans une revue
Discrete Mathematics and Theoretical Computer Science, DMTCS, 2011, Vol. 13 no. 1 (1), pp.1--11
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00990495
Contributeur : Service Ist Inria Sophia Antipolis-Méditerranée / I3s <>
Soumis le : mardi 13 mai 2014 - 15:39:30
Dernière modification le : jeudi 7 septembre 2017 - 01:03:36
Document(s) archivé(s) le : lundi 10 avril 2017 - 22:21:55

Fichier

1332-5879-1-PB.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00990495, version 1

Collections

Citation

Sylwia Cichacz, Jakub Przybylo. Irregular edge coloring of 2-regular graphs. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2011, Vol. 13 no. 1 (1), pp.1--11. 〈hal-00990495〉

Partager

Métriques

Consultations de la notice

80

Téléchargements de fichiers

227