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We prove upper and lower bounds on the chromatic number of the square of the cartesian product of trees. The bounds
are equal if each tree has even maximum degree.
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1 Introduction
This paper studies colourings of the square of cartesian products of trees. For simplicity we assume that a
tree has at least one edge.

For our purposes, a colouring of a graphG is a function c : V (G)→ Z such that c(v) 6= c(w) for every
edge vw of G. The square graph G2 of G has vertex set V (G), where two vertices are adjacent in G2

whenever they are adjacent in G or have a common neighbour in G. Thus, a colouring of G2 corresponds
to a colouring of G, such that in addition, vertices with a common neighbour in G are assigned distinct
colours.

Let [a, b] := {a, a+ 1, . . . , b}. The cartesian product of graphs G1, . . . , Gd is the graph G1� · · ·�Gd

with vertex set {(v1, . . . , vd) : vi ∈ V (Gi)}, where vertices v = (v1, . . . , vd) and w = (w1, . . . , wd) are
adjacent whenever viwi ∈ E(Gi) for some i ∈ [1, d], and vj = wj for all j 6= i. In this case, vw is in
dimension i. Let ∆(G) be the maximum degree of G.

Theorem 1 Let T1, . . . , Td be trees. Let G := T1�T2� · · ·�Td. Then

1 +

d∑
i=1

∆(Ti) ≤ χ(G2) ≤ 1 + 2

d∑
i=1

d 12∆(Ti)e .

This upper bound improves upon a similar bound by Jamison et al. (2006), who proved χ(G2) ≤
1 + 2

∑d
i=1(∆(Ti)− 1), assuming that each ∆(Ti) ≥ 2. Theorem 1 implies:
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Corollary 1 Let T1, . . . , Td be trees, such that ∆(Ti) is even for all i ∈ [1, d]. LetG := T1�T2� · · ·�Td.
Then

χ(G2) = 1 +

d∑
i=1

∆(Ti) .

This corollary generalises a result of Fertin et al. (2003), who proved it when each Ti is a path, and thus
G is a d-dimensional grid. See (Sopena and Wu, 2010; Fertin et al., 2004; Pór and Wood, 2009; Jamison
et al., 2006; Chiang and Yan, 2008) for more related results.

2 The Proof
For a colouring c of a graph G, the span of an edge vw of G is |c(v) − c(w)|. The following lemma is
well known; see (Pór and Wood, 2009) for example.

Lemma 1 Let G be a graph. If G2 has a colouring in which every edge of G has span at most s, then G2

is (2s+ 1)-colourable.

Proof: Let c : V (G2)→ Z be the given colouring of G2. Since every edge of G has span at most s, every
edge of G2 has span at most 2s. Let c′(v) := c(v) mod (2s+ 1) for each vertex v. Then c′(v) 6= c′(w)
for each edge vw of G2. Thus G2 is (2s+ 1)-colourable. 2

Lemma 2 For every tree T and non-negative integer s, T 2 has a colouring such that every edge of T has
span in [s+ 1, s+ d 12∆(T )e].

Proof: We proceed by induction on |V (T )|. If |V (T )| = 2 the result is trivial. Now assume that
|V (T )| ≥ 3. Let v be a leaf vertex of T . Let w be the neighbour of v. By induction, (T − v)2 has a
colouring c such that every edge of T − v has span in [s+ 1, s+ d 12∆(T )e]. Let

X := {x ∈ Z : |x| ∈ [s+ 1, s+ d 12∆(T )e]} .

Each neighbour of w in T −v is coloured c(w)+x for some x ∈ X . Since |X| ≥ ∆(T ) and w has degree
less than ∆(T ) in T − v, for some x ∈ X , no neighbour of w is coloured c(w) +x. Set c(v) := c(w) +x.
Thus |c(v) − c(w)| = |x| ∈ [s + 1, s + d 12∆(T )e]. No two neighbours of w receive the same colour.
Hence c is the desired colouring of T . 2

Proof of Theorem 1: The lower bound is well known (Jamison et al., 2006). In particular, for i ∈ [1, d],
let vi be a vertex of maximum degree in Ti. Then (v1, . . . , vd) has degree

∑
i ∆(Ti) in G. This vertex

and its neighbours in G receive distinct colours in any colouring of G2. Thus χ(G2) ≥ 1 +
∑

i ∆(Ti).
Now we prove the upper bound. Let s1 := 0 and si :=

∑i−1
j=1d

1
2∆(Tj)e. By Lemma 2, T 2

i has a
colouring ci such that every edge of Ti has span in [si + 1, si + d 12∆(Ti)e]. Thus the spans of edges in
distinct trees are distinct.

Colour each vertex v = (v1, . . . , vd) of G by c(v) :=
∑d

i=1 ci(vi).
Suppose on the contrary that c(v) = c(w) for some edge vw of G. Say vw is in dimension i. Thus

vj = wj for all j 6= i. Hence ci(vi) = ci(wi), and ci is not a colouring of G. This contradiction proves
that c is a colouring of G.
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Suppose on the contrary that c(x) = c(y) for two vertices x and y with a common neighbour v in G.
Say vx is in dimension i, and vy is in dimension j. Thus v` = x` for all ` 6= i, and v` = y` for all ` 6= j.
Now ci(xi)−ci(vi) = c(x)−c(v) = c(y)−c(v) = cj(yj)−cj(vj). Thus the edges xivi and yjvj have the
same span. Since the spans of edges in distinct trees are distinct, i = j. Hence ci(xi) = ci(yi). However,
vi is a common neighbour of xi and yi in Ti, implying ci is not a colouring of T 2

i . This contradiction
proves that c is a colouring of G2.

Each edge of G has span at most
∑d

i=1d
1
2∆(Ti)e. The result follows from Lemma 1. 2
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