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In 1982, Opsut showed that the competition number of a liaplgis at most two and gave a necessary and sufficient
condition for the competition number of a line graph being.om this paper, we generalize this result to the compe-
tition numbers of generalized line graphs, that is, we sl the competition number of a generalized line graph is
at most two, and give necessary conditions and sufficierditions for the competition number of a generalized line
graph being one.
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1 Introduction

The notion of a competition graph was introduced by Coheragld means of determining the smallest
dimension of ecological phase space. Thenpetition graptC' (D) of a digraphD is a graph which has
the same vertex set d3 and an edge between two distinct vertieeandv if and only if there exists a
vertexz in D such thaiu, «) and(v, z) are arcs ofD. Roberts [12] observed that any grahogether
with sufficiently many isolated vertices is the competitgmaph of an acyclic digraph. Thrempetition
numberk(G) of a graphG is defined to be the smallest nonnegative intdgsuch thatz together withk
isolated vertices added is the competition graph of an acgligraph. It is not easy in general to compute
k(G) for an arbitrary grapléz, since Opsut [8] showed that the computation of the competitumber

of a graph is an NP-hard problem. It has been one of the importgearch problems in the study of
competition graphs to compute the exact values of the cdtigmehumbers of various graphs. For some
special graph families, we have explicit formulae for cotimoy competition numbers: i is a chordal
graph without isolated vertices, théitG) = 1; If G is a nontrivial triangle-free connected graph then
k(G) = |E(G)| — |V(G)| + 2 ([12]). For more recent results on graphs whose competitionbers are
calculated exactly, see [3, 4,5, 6,7, 9, 10, 11, 13].
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The line graph L(H) of a graphH is the simple graph defined By (L(H)) = E(H) andee’ €
E(L(H)) ifand only if e ande’ have a vertex in common ard# ¢’. A graphG is called dine graphif
there exists a grapH such thatG is isomorphic to the line graph df. A clique S of a graphG is a set
of vertices ofGG such that the subgraph induced$ys a complete graph (the empty set is also considered
a clique). A vertexy in a graphG is calledsimplicial if the neighborhood of in G is a clique ofG. In
1982, Opsut [8] showed the following theorem.

Theorem 1.1 ([8]) For aline graphG, k(G) < 2 and the equality holds if and onlyd has no simplicial
vertex.

In this paper, we investigate the competition number of segadized line graph which was introduced
by Hoffman [2] in 1970. For a positive intege, the cocktail party graphC' P(m) is the complete
multipartite graph withn partite sets all of which have the size two:

V(CP(m)) = U{Iz,yl}
le[m]

E(CP(m)) = Aww;|i,je[m],i<jtU{yy; |ij e mli<j}
Ulziy; [ 4,5 € [m],i # j}

where [m] denotes then-set{1,2,...,m}. Note thatCP(1) is the graph with two vertices and no
edge. Avertex-weighted graphH, f) is a pair of a graplif and a non-negative integer-valued function
f+ V(H) — Z>o on the vertex set off. Thegeneralized line grapl.(H, f) of a vertex-weighted
graph(H, f) is the graph obtained from the disjoint union of the line ¢r&gH ) of the graph” and the
cocktail party graph®), := CP(f(v)) wherev € V(H) with f(v) > 0 by adding edges between all the
vertices in@Q, ande € V(L(H)) such thak is incident tov in H (see Figure 1). For a grap, if f isa
zero function (i.e.f(v) = 0 foranyv € V(H)), then the generalized line graph(@¥, f) is the same as
the line graph ofd. A graphd is called ageneralized line grapif there exists a vertex-weighted graph
(H, f) such thati is isomorphic to the generalized line graph(éf, f).

In this paper, we show the following result.

Theorem 1.2 The competition number of a generalized line graph is at rivest

This paper is organized as follows. Section 2 is the main gfattiis paper. Subsection 2.1 gives some
observations on the competition graphs of acyclic digraghish will be used in this paper. Subsection
2.2 shows that the competition number of a generalized lnaplgis at most two. In Subsection 2.3,
we investigate generalized line graphs whose competitionbers are one, and give some sufficient
conditions and necessary conditions. Section 3 gives somelading remarks.

2 Main Results

2.1 Preliminaries

For a digraphD and a vertexs of D, Nj;(v) and N, (v) denotes the out-neighborhood and the in-
neighborhood of, respectively, i.e.N; (v) := {z € V(D) | (v,z) € A(D)} andN, (v) := {z €
V(D) | (z,v) € A(D)}. Adigraph is said to bacyclicif it contains no directed cycles. An ordering
v1, ..., Vv (p) Ofthe vertices of a digrapP is called aracyclic orderingof D if (v;,v;) € A(D) implies

i < j. Itis well-known that a digraph is acyclic if and only if it @n acyclic ordering.
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Fig. 1: A vertex-weighted graplH, f), wheref : V(H) — Z>¢ is defined byf(v1) = 2, f(vs) = 3, f(vs) =1,
f(v2) = f(va) = f(vs) = 0, and its generalized line gragh( H, f)

For a cliqueS of a graphGG and an edge of GG, we say that is covered bys if both of the endvertices
of e are contained it¥. An edge clique coveof a graphG is a family of cliques of5 such that each edge
of G is covered by some clique in the family. Tedge clique cover numbéi; (G) of a graphG is the
minimum size of an edge clique cover@f A vertex clique coveof a graphG is a family of cliques of
G such that each vertex @f is contained in some clique in the family. Thertex clique cover number
0y (G) of a graphG is the minimum size of a vertex clique cover@f For a graphG and a vertex of
G, 0y (Ng(v)) is the vertex clique cover number of the subgraplizahduced by the neighbors ofin
G. Opsut [8] showed the following lower bound for the competithumber of a graph (see also [14] for
a generalization of this inequality).

Proposition 2.1 ([8]) For any graphG, k(G) > min,cy () 0v (Na(v)).

For a positive integel, we denote by}, the edgeless graph drvertices, i.e., the graph withvertices
and no edges. The following lemma which comes from an easyredtion is elementary but useful.

Lemma 2.2 LetG be a graph with at least two vertices and kebe an integer such that > k(G). Then
there exists an acyclic digraph such that

@) C(D) = G U,

(b) D has an acyclic ordering, ..., vy (@), Vv (@)|+1> - - - Vv (G)|+k» WhereV(G) = {v,...,
vy (e} andV (Ix) = {vjv(@)+1; - - -» Vjv(@)|+x}> and

(c) NB(U1) = NB('UQ) = (.
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Proof: By the definition of the competition number of a graph, thedists an acyclic digrapt, satis-
fying (a). LetD- be the digraph obtained frof; by deleting all the arcs outgoing from any vertices in
I.. Then we can check thd, is an acyclic digraph satisfying (a) and (b). Since thereigaut outgoing
from any vertex inlj, there is an acyclic ordering, vs, ..., vjv(@)|, Vv (@)|+1s - - - Vv (@)|+k OF D2
such thatV' (G) = {v1,va,... 7U|V(G)\} andV (1) = {U|V(G)\+17 e U\V(G)Hk}- By the definition of
an acyclic ordering of a digraph, it holds thaf, (v1) = 0 andNp, (va) € {v1}. If Np(v2) = {v1},
then letD be the digraph obtained frofi, by deleting the ar€v;, v2). Otherwise, letD = D,. ThenD

is an acyclic digraph satisfying (a), (b), and (c). Thus tia¢esnent holds. O

The competition number of a cocktail party graph is given limKPark and Sano [6].

Proposition 2.3 ([6]) The competition number of a cocktail party graptP(m) with m > 2 is equal to
two.

2.2 Proof of Theorem 1.2

In this subsection, we show that the competition number areecalized line graph is at most two.
For two vertex-disjoint graph& and H and a cliquek of G, we define the grapt’ x x H by

V(Gxg H) = V(G)UV(H)
E(Gxxg H) = EGYUEH)U{w|ue K,veV(H)}

(see Figure 2).
From Lemma 2.2, we introduce a notion of top-two of a graplodews.

Definition 1 For a graph, a set{w, v} of two distinct vertices: andv of G is called atop-twoof G if
there exists an acyclic digragh such thaCC'(D) = G' U Iy and D has an acyclic ordering whose first
and second vertices ateandwv. O

Note that any graph with at least two vertices always hasaat lene top-two. If a grapty has no
edges, then any pair of two vertices@fis a top-two ofG.

Proposition 2.4 LetG and H be graphs with at least two vertices such thatG) NV (H) = 0 and letK’

be a clique of7. Suppose that there exists an acyclic digrdphsuch thatC'(D’) = G U {u1, us} where
{u1,us} is a top-two ofH. If either H has no edges off has no isolated vertices, then there exists an
acyclic digraphD satisfying the following:
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. [ (Gxxg HYUI, if H has no edges
M) C(D) = { (G xx H)U Iy if H has noisolated vertices and

(i) D has an acyclic ordering whose firdt (G)| + 2 terms induce the digrapb’.

Proof: Suppose thall has no edges. L&t(H) = {uy,uz, ..., un}, wherem > 2. We define a digraph
DbyV(D):=V(G)UV(H)U{umit1,Ums2} and

i=1

A(D) := A(D")U <U{(I,Ui+2) |z e KU {uz}}>

whereu,, 1 andu,,+2 are new vertices. Then, it is easy to see thads an acyclic digraph satisfying (i)
and (ii).

Suppose thall has no isolated vertices. Let:= k(H). By the assumption thdtu;, us} is a top-two
of H, there exists an acyclic digragh’ such thaiC(D"”) = H U I, and the two vertices; andus in
D" satisfyNp,, (u1) = Np.(uz2) = 0. Let D be the digraph defined by (D) := V(D’) U V(D") and
A(D) := A(D")U A(D")U A* where

A* = {(u,v) |u e K,v e V(D")\ {ur,us}}.

Since the ordering obtained by attaching an acyclic ordesinD” at the end of an acyclic ordering of
D' gives an acyclic ordering db, D is acyclic and satisfies (ii). SincE has no isolated vertices, each
vertex in H has an out-neighbor iD”. Therefore, each edge 6f x x H between a vertex i’ and a
vertex of H is an edge of’(D) which results fromd*. ThusC(D) = (G x x H) U I}, and saD satisfies

OF O

For any vertex of a graphH, let Ky (v) denote the set of the edges incidenvtin H. Note that
Ky (v) forms a clique of the line graph df for each vertex in a graphH and{Kg(v) |v e V(H)}is
an edge clique cover of the line graphidf

Theorem 2.5 Let (H, f) be a vertex-weighted graph. For any edge: uv of H, there exists an acyclic
digraph D such thatC'(D) = L(H, f) U I, and thatN, (z1) = Kg(u) and N (22) = Kg(v), where
V(IQ) = {21,2’2}.

Proof: Let G := L(H, f) for convenience. First, we consider the case whfeiga zero function. We
show the theorem by induction on the number of edgd$.0ff H has at most one edge, then the statement
is checked easily. Assume that the statement is true for eaphgwvithm — 1 edges wheren > 2. Let
H be a graph withn edges. It is sufficient to consider the case whBrés connected. Take an edge
e = uv of H. Sincem > 2 and H is connected, there exists an edgéncident toe in H. Without loss
of generality, we may assume that the verteis also an endvertex @f. Let H' be the graph obtained
from H by deleting the edge. ThenL(H’) is the graph obtained fromi(H) by deleting the vertex
e. SinceH' hasm — 1 edges, by the induction hypothesis, there exists an acfigi@phD’ such that
C(D')=L(H')U{z1,e}andNp, (z1) = Kg' (u).

Now we define a digrap® by V(D) := V(D') U {22} = V(L(H)) U {21, 22} and

A(D) := A(D")U{(e,z1)} U{(e",22) | ¢’ € Ky (v)}.
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Then the ordering of the vertices i obtained from an acyclic ordering @’ by adding the vertex,
to it as the last term is an acyclic ordering©f and soD is acyclic. By the definitions oD and H’,
Np(z2) = Kg(v) andNp (21) = Ny, (21) U {e} = Kpr(u) U {e} = Ky (u). Itis easy to see that
C(D) = L(H) U {z1, z2}. Thus the theorem holds whéfris a zero function.

Second, we consider the case whéris not a zero function. Lety,vs,...,v, be the vertices off
such thatf (v;) > 0. For each € {0} U [n], we define a grapt¥; by

G() = L(H) and Gz = Gi,1 KKH(W) Qyi (Z S [n]),

whereQ@,, = CP(f(v;)). Note thatG,, = G.

Take an edge = uv of H. Sincef(v1) # 0, Q,, has at least two vertices. Théh,, has a top-two
{z1, 22}. SinceG is a line graph, by the above argument on the casg of 0, there exists an acyclic
digraphDy such thaC'(Dg) = Go U {21, 22} andNp, (z1) = Kp(u) andNp, (z2) = Ku(v).

Since@,, has no edges dp,, is connected, it follows from Propositions 2.3 and 2.4 that¢ exists
an acyclic digraptD; such thatC(D;) = G; Ul andD; has an acyclic ordering whose fit$t(Go) | +2
terms induce the digrapRy. ThenNp, (21) = Np (21) = Ku(u) andNp (22) = Np (22) = K (v).
From repeating the process, we can obtain an acyclic digfaptsuch thatC'(D,,) = G, U I, and
Np (#1) = Ku(u) andNp, (z2) = Ku(v). LetD := D,,. SinceG,, = G, the theorem holds. O

Proof of Theorem 1.2: It immediately follows from Theorem 2.5 that the competitioumber of a
generalized line graph is at most two. O

2.3 Generalized line graphs with competition number one

In the following, we show some necessary conditions andcéerffi conditions for the competition number
of a connected generalized line graph being one. Theoremalyd that the competition number of a
connected line graph is one if and only if it has a simplicedtex.

Since the case of the generalized line grdgii, f) of a vertex-weighted graptH, f) with a zero
function f is reduced to Theorem 1.1, we consider the case whera nonzero function. In this subsec-
tion, when we consider the generalized line grédghi, /) of a vertex-weighted graptt, f), we denote
the cocktail party grapl®’P(f(v)) added toL(H) by @, for each vertexw of H in cases where this
notation will not cause confusion.

First, we give necessary conditions for the competition benof a connected generalized line graph
being one.

Lemma 2.6 If a graph G has competition number one, théhhas a simplicial vertex or an isolated
vertex.

Proof: If G has no simplicial vertex and no isolated vertex, then thepmtition number of~ is at least
two by Proposition 2.1. Thus the lemma holds. O

Theorem 2.7 Let G be the generalized line graph of a connected vertex-weighteph (H, f) with a
nonzero functiory. If k(G) = 1, then at least one of the following holds:

(i) f(v) =1 for some vertex of H,
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Fig. 3: A vertex-weighted graplif, f), wheref : V(H) — Z>¢ is defined byf(v1) = f(v2) = 0, f(v3) = 2,
f(v4) = 1, and its generalized line gragh( H, f)

(i) There exists a vertexof H such thatf(v) = 0 and Kz (v) contains a simplicial vertex af.

Proof: Assume that(G) = 1. Suppose that (i) does not hold. Thé¢fw) # 1 for any vertexu €
V(H). Ask(G) = 1 andG is connected( has a simplicial vertex by Lemma 2.6. Sinc& (G) =
Uwev i (Ku(u) UQy), the simplicial vertex: is contained iy (v) U Q,, for somev € V(H). Since
f(v) # 1, eitherf(v) = 0or f(v) > 2. If f(v) > 2, then any vertex iy (v) U @, is not simplicial,
which is a contradiction. Therefoygv) = 0. Thus the simplicial vertex is contained i (v). Hence
(ii) holds. O

Remark 2.8 The conditions (i) and (ii) in Theorem 2.7 are not sufficieomditions for generalized line
graphs to have competition number one. O

Example 2.9 Let (H, f) be the vertex-weighted graph wheifeis the graph defined by (H) = {v1, va,
v3,va} @Nd E(H) = {viva,vovs,vzva} and f : V(H) — Z>¢ is defined byf(vi) = f(v2) = 0,
f(vs) =1, f(vs) = 2 (see Figure 3). Then, the generalized line graptfhff) satisfies both (i) and (ii)
of Theorem 2.7. But, the competition numberlgfH, f) is two.

To see this, we recall a result by Kim [3] which states thatdbketion of some pendant vertices from
a connected graph does not change its competition numiter iEsulting graph has at least two vertices.
Let G’ be the graph obtained frof H, f) by deleting the two vertices i,,, and the vertex;v,. Then,
k(G') = k(L(H, f)). SinceG’ contains neither an isolated vertex nor a simplicial verké&’) > 2 by
Lemma 2.6. By Theorem 1.2(L(H, f)) = 2. 0

Next, we show the following result which gives sufficient ddions for generalized line graphs to have
competition number one.

Theorem 2.10 Let G be the generalized line graph of a connected vertex-weibiteph (H, f) where
H has at least one edge arfds a nonzero function. Thek(G) = 1 if one of the following holds:

(i) f(u)= f(v) =1 for some edge = uv of H,

(i) f(v) < 1forany vertex of H.
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Proof: Note thatG is a connected graph with at least two vertices, siicis a connected graph with at
least one edge antlis a nonzero function. TherefokéG) > 1. Itis sufficient to show that there exists
an acyclic digraptD such thatC' (D) = G U I.

Suppose that (i) holds. Therf(u) = f(v) = 1 for some edge:w of H and therefore botl),,
and @, are the edgeless gragh on two vertices. Let/(Q.) = {qu,q¢,} andV(Q,) = {q,q,}.
Let fo : V(H) — Z>¢ be the function defined byy(u) = fo(v) = 0 and fo(z) = f(z) for any
x € V(H)\ {u,v}. Let Gy be the generalized line graph 0f, fy). ThenG is isomorphic to the
graph obtained frond# by deleting the four vertices,, ¢,,, ¢, andg,,. By Theorem 2.5k(Gy) < 2
and there exists an acyclic digraph such thatC(Dy) = Go U {q,, 2z}, wherez is a new vertex, and
Ku(u) = Np (¢0) andK g (v) = Np (2). Let D be a digraph defined by (D) := V(G) U {z} and

AD) = A(Do) U A{(qu,q,): (@> ), (qw,ay,), (a5 2)}
U{(z,q,) |z € Kp(uw)}U{(z,q,) |z € Ku(v)}.

ThenD is acyclic andC(D) = G U {z}. Thereforek(G) < 1.

Next, suppose that (ii) holds. Theitv) < 1 forany vertexw of H. LetS :={v e V(H) | f(v) = 1}.
Since f is not a zero function, the sétis not empty. LetS := {uy,ua,...,u:}, wheret := |S| > 0.
Then@,, = CP(1) = I, and etV (Q.,) = {q2i—1,¢2:} for i € [t]. By Theorem 2.5, there exists an
acyclic digraphD, such thaCC'(Dg) = L(H) U {z, g2} wherez is a new vertex anV, (z) = Kp(u1).
Letvy,vo,...,vn, g2¢, 2 be an acyclic ordering aby. If ¢ = 1 then letR := (), and ift > 1 then let

t—1

Ri=|J{(2,q2) | v € Knr(uit1) U{git1}}-
=1

Let D be the digraph defined By (D) := V(Do) U {q1,--.,q2:—1} = V(G) U {z} and

A(D) = A(Do) U{(q1,2)} U <U{(x,qzz-_1) |z € Kp(ui) U {qzi}}> UR.

=1

ThenD is acyclic since the ordering , vs, ..., v, ¢21, @201, ¢2, q1, z Of the vertices ofD is an acyclic
ordering ofD. In addition, it follows from the definitions ab andG thatC (D) = G U {z}. Therefore
kE(G) <1.

Thusk(G) = 1, and hence the theorem holds. O

Remark 2.11 Each of the conditions (i) and (ii) in Theorem 2.10 is not resegy conditions for general-
ized line graphs to have competition number one. O

Example 2.12 Let (H, f) be the vertex-weighted graph whefg is the graph defined by (H) =
{v1,v2,v3,04} and E(H) = {wvjva,vivs3,v1v4} and f : V(H) — Zs¢ is the function defined by
f(v1) = f(v2) = f(vs) = 0and f(vs) = 2 (see Figure 4). Then, the generalized line grapt/off)
has the competition number one Wi, f) satisfies neither (i) nor (ii) of Theorem 2.10.
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Fig. 4: A vertex-weighted grapli#, f), wheref : V(H) — Z>¢ is defined byf(v1) = f(v2) = f(vs) = 0 and
f(va) = 2, and its generalized line gragh( H, f)

Let V(Quv,) = {q1, 42,93, 94} and E(Q.,) = {0142, 4243, 4304, qaq1 }. To seek(L(H, f)) = 1, we
define a digraptD by
V(D) = V(L(H, f))U{z} = EH)UV(Qu)U{z},
A(D) {(q1,92) (a4, 42), (V1v2,q2) } U {(q1,43), (g2, 43), (v1v2,q3)}
U{(q2,v1v3), (g3, v1v3), (v1ve,v1v3)} U {(g3, v1va), (g4, v104), (V1V2,v104)}
U{(v1v2, 2), (1103, 2), (V1v4,2) }

wherez is a new vertex. Then we can easily check thab) = L(H, f)U{z}, and thatD is acyclic since
the orderinggy, g4, v1v2, g2, g3, V103, V104, z IS @n acyclic ordering oD. Thereforek(L(H, f)) < 1,
SinceL(H, f) is connectedk(L(H, f)) > 1. Hencek(L(H, f)) = 1. O

3 Concluding Remark

In this note, we showed that the competition number of a gdized line graph is at most two, which
is an extension of a result on the competition number of adim@h. In addition, we tried to charac-
terize generalized line graphs whose competition numberse, and then found necessary conditions
and sufficient conditions for the competition number of aegatized line graph being one. However,
these conditions are not necessary-and-sufficient camditiso it still remains open to give a complete
characterization of generalized line graphs whose cortipetiumbers are one.
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