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This article deals with the Maximum Weight Stable Set (MWS) problem (and some other related NP-hard problems)
and the class of P6-free graphs. The complexity status of MWS is open for P6-free graphs and is open even for P5-free
graphs (as a long standing open problem). Several results are known for MWS on subclasses of P5-free: in particular,
MWS can be solved for k-colorable P5-free graphs in polynomial time for every k (depending on k) and more
generally for (P5,Kp)-free graphs (depending on p), which is a useful result since for every graph G one can easily
compute a k-coloring of G, with k not necessarily minimum. This article studies the MWS problem for k-colorable
P6-free graphs and more generally for (P6,Kp)-free graphs. Though we were not able to define a polynomial time
algorithm for this problem for every k, this article introduces: (i) some structure properties of P6-free graphs with
respect to stable sets, (ii) two reductions for MWS on (P6,Kp)-free graphs for every p, (iii) three polynomial time
algorithms to solve MWS respectively for 3-colorable P6-free, for 4-colorable P6-free, and for (P6,K4)-free graphs
(the latter allows one to state, together with other known results, that MWS can be solved for (P6,F )-free graphs in
polynomial time where F is any four vertex graph).

Keywords: Maximum Weight stable Set problem; P6-free graphs; polynomial algorithms

1 Introduction
Let G = (V,E) be a graph. A stable set (or an independent set) of G is a subset of pairwise nonadjacent
vertices of G. a stable set of G is maximal if it is not properly contained in any other stable set of G. Let
w be a weight function on V : the weight of a stable set I of G is given by the sum of w(v) for all v ∈ I .

The MWS problem is the following: Given a graph G = (V,E) and a weight function w on V ,
determine a stable set of G of maximum weight. Let αw(G) denote the maximum weight of any stable
set of G. The MWS problem is called MS problem if all vertices v have the same weight w(v) = 1.

The MWS problem is NP-hard [25] and remains difficult for cubic or planar graphs respectively by
[18], [17], for graphs not containing cycles below a certain length [38], in particular for triangle-free
graphs [41], while it can be efficiently solved for various graph classes, such as e.g. perfect graphs
[22], extensions of claw-free graphs [2, 3, 11, 12, 30, 33, 39, 44], and extensions of 2K2-free graphs
[14, 15, 31].
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The class of P5-free graphs is the unique minimal class, defined by forbidding a single connected
subgraph, for which the computational complexity of M(W)S seems to be an open question − see [1, 4].

Actually, this seems to be a long standing open question, though a subexponential time algorithm to
solve MS for P5-free graphs was recently introduced [42]. However several results are known for M(W)S
on subclasses of P5-free graph, such as e.g. MWS can be solved for (Pt,K1,q)-free graphs for any fixed t
and q in polynomial time (depending on t and on q) whereK1,q is the graph formed by q+1 vertices such
that one vertex is adjacent to the other q vertices which form a stable set [32], and MWS can be solved
for (P5, F )-free graphs in polynomial where F is any five vertex graph different to a C5 (by different
respective references not reported here). Let us report the following results on k-colorable P5-free graphs.

Graph G = (V,E) is k-partite (equivalently called k-colorable) if V admits a partition, say
{V1, . . . , Vk} (equivalently called k-coloring of G), such that Vi is a stable set of G for i = 1, . . . , k.
A k-colorable graph will be also denoted as (V1 ∪ . . . ∪ Vk, E). A 2-colorable graph is a bipartite graph.
Let us observe that for every graph G one can easily find a k-coloring of G, with k not necessarily mini-
mum.

A clique is a set of pairwise adjacent vertices of a graph: aKp is a clique of p elements, and aK3 is also
called triangle. Let us observe that every p-colorable graph is Kp+1-free (for any p), that is, Kp+1-free
graphs are a generalization of p-colorable graphs (for any p).

• M(W)S can be solved for k-colorable P5-free graphs for any fixed k in polynomial time (depending
on k), and more generally for (P5,Kp)-free graphs for any fixed p (depending on p) [20, 35].

• The above polynomial results were recently re-stated, by introducing a new structure property:
every connected k-colorable P5-free graph has a vertex whose non-neighbors induce a (k − 1)-
colorable graph; this property allows one to state that the polynomial results hold also to other
NP-hard problems related to MWS, and to improve the time bound of the previous algorithms for
MWS on k-colorable P5-free graphs [34].

The class of P6-free graphs, which is a natural generalization of that of P5-free graphs, was considered
in several papers which introduce structure properties often applied to show that NP-hard problems can
be solved for (subclasses of) such graphs in polynomial time. Let us report just some of them.

• [6] gives a characterization of graphs with no long paths with respect to the existence of the set
of vertices whose distance from any other vertex is at most a fixed value: a corollary is that every
connected P6-free graph contains a vertex whose distance to any other vertex is at most 3. See also
[13] for similar results. See also [5, 45] for extensions of the results in [6].

• [16] (see also [21]) describes a technique of decomposition of bipartite graphs and characterize the
family of bipartite graphs, including bipartite P6-free graphs, which are totally decomposable with
respect to such a decomposition: in particular, the authors prove that bipartite P6-free graphs have
bounded-clique width and show that a large class of NP-hard problems, including MWS, can be
solved for such graphs in O(n+m) time.

• [32] shows that MWS can be solved for (Pt,K1,q)-free graphs for any fixed t and q in polynomial
time (depending on t and on q).
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• [10] extends the above result on bounded clique-width of bipartite P6-free graphs to (P6,K3)-free
graphs and shows that a large class of NP-hard problems, including MWS, can be solved for such
graphs in O(n2) time.

• [8] provides structure properties on (P6, C4)-free graphs and shows that MWS can be solved for
such graphs in polynomial time (among other results).

• [24] shows that every connected P6-free graph contains a dominating induced C6 or a dominating
(not necessarily induced) complete bipartite graph. See also [28, 27] for previous similar results.

• [36] shows that MWS can be solved for (P6,diamond)-free graphs in polynomial time.

This article. This article studies the M(W)S problem for k-colorable P6-free graphs and more generally
for (P6,Kp)-free graphs. Actually we were not able to define a polynomial time algorithm to solve this
problem for every k (or for every p). However this article introduces: some structure properties of P6-free
graphs with respect to stable sets (Section 3 and Appendix); two reductions, one of which is just partial,
for MWS in (P6,Kp)-free graphs for every p (Section 4); three polynomial time algorithms to solve MWS
respectively for 3-colorable P6-free, for 4-colorable P6-free, and for (P6,K4)-free graphs (Section 5); an
open problem, i.e., the general case which we were not able to address (Section 6).

In what follows let us try to motivate the interest of this article by the following points.

• Since the complexity of the MWS problem is open for P6-free graphs, the topic of this article may
be of interest since for every graph G one can easily find a k-coloring of G (with k not necessarily
minimum) for some natural k. In this context, let us recall that: to check whether a graph G is
3-colorable is NP-complete [19]; to check whether a P6-free graph is 3-colorable is polynomial
[43]; to check whether a P6-free graph is k-colorable for k > 3 seems to be open [23].

• The technique used to prove the polynomial results of Section 6 is based on three tools: a decompo-
sition approach following the idea of [8], structure properties (both application of known ones [16]
and introduction of new ones), and the anti-neighborhood (also called non-neighborhood) approach,
i.e., the iterative search of a vertex v of G such that the problem can be solved in polynomial time
for G− v.

It follows that the polynomial results of Section 5 hold also for other NP-hard problems related to
MWS. In particular they hold for: (i) the Minimum Weight Independent Dominating Set problem,
i.e., Given a graph G = (V,E) and a weight function w on V , determine a maximal stable set of G
of minimum weight; (ii) the Maximum Induced Matching problem, i.e., Given a graph G = (V,E)
and a weight function w on E, determine a induced matching of G (that is, a matching of G such
the vertices of the edges of the matching are pairwise nonadjacent) of maximum weight. Both these
problems are NP-hard and their complexity for P5-free graphs and for P6-free graphs seems to be
open, see respectively [7], [26].

• Concerning the techniques used in the mentioned analogous results on P5-free graphs [20, 34, 35]:
we were not able to apply that of [20, 35], and it was not possible to apply that of [34] (though we
apply a similar technique looking for similar structure properties in Section 3), as briefly discussed
below.
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[20, 35] apply an augmenting graph technique, which is based on the the study of bipartite graphs.
We were not able to deal with bipartite P6-free graphs, which do not have the strong structure
properties of bipartite P5-free graphs. However, such a technique in itself does not provide results
for the weighted case. Furthermore, it seems that all the known results obtained by such a technique
for MS on subclasses of Pt-free graphs for t > 5 required the additional assumption of C4-freeness
(or more generally of banner-freeness, e.g. [29], or K2,3-freeness, e.g. [37]).

[34] introduces the following structure property: every connected k-colorable P5-free graph has
a vertex whose non-neighbors induce a (k − 1)-colorable graph, say property P . Then the anti-
neighborhood approach applies. Then the polynomial results of [34] hold also for other NP-hard
problems related to MWS (similarly to the point above). However property P does not hold for
P6-free graphs: a counter-example for k = 2 is a P5 itself. Furthermore, even an iterated ver-
sion of property P does not hold for P6-free graphs, that is, a possible property such as: every
connected k-colorable P6-free graph has a vertex v such that each connected component H of
the subgraph induced by the non-neighbors of v has a vertex whose non-neighbors in H induce
a (k − 1)-colorable graph. (Such a property would have solved the problem, by an iterated anti-
neighborhood approach). A counter-example for k = 2 is the graph of the following figure. Also,
the scheme of that counter-example allows one to construct repeatedly counter-examples showing
that even a repeatedly iterated version of property P does not hold for P6-free graphs.

 

• Though the complexity of the MWS problem is open even on P5-free graphs, polynomial results
for M(W)S on subclasses of P6-free graphs may be of interest since: if MS should (be shown to)
remain NP-hard for P5-free graphs, then MS would remain NP-hard for P6-free graphs too; if MS
should (be shown to) be polynomial for P5-free graphs, then by the mentioned result of [1] the
class of P6-free graphs would be one of the three minimal classes, defined by forbidding a single
connected subgraph, for which the computational complexity of MS would be an open question.

• The polynomial results for MWS on 3-colorable P6-free and on 4-colorable P6-free graphs extend
the respective mentioned analogous results on P5-free graphs for the case k = 3, 4 [20, 34, 35].
Then let us observe that MS remains NP-hard for such graph classes without the assumption of P6-
freeness. That follows by the argument given in [41] to show that MS remains NP-hard for triangle-
free graphs: given any graph G = (V,E) one can construct a triangle-free graph G′ = (V ′, E′) by
a double subdivision of each edge of G, with α(G′) = α(G) + |E|; now, since G′ is 3-colorable
too, the assertion follows.
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• The polynomial result for MWS on (P6,K4)-free graphs extends the respective mentioned anal-
ogous results on P5-free graphs for the case of (P5,K4)-free graphs [20, 34, 35] and mainly the
mentioned result on (P6,K3)-free graphs [10] (with respect to the MWS problem). Then let us
observe that MS remains NP-hard for such a graph class without the assumption of P6-freeness,
since it remains NP-hard for triangle-free graphs [41]. Then this polynomial result allows one to
state that MWS can be efficiently solved for (P6, F )-free graphs where F is any four vertex graph:
that follows by the mentioned results for MWS on claw-free and 2K2-free graphs, by the fact that
MWS on paw-free graphs can be reduced to MWS on triangle-free graphs (see [40]), and by the
respective mentioned results for MWS on (P6,C4)-free and (P6,diamond)-free graphs [8, 36].

• The preparatory results of Section 3 partly extended in the Appendix and the reductions of Section
4 might provide possible tools for new results on this topic.

2 Notation and Preliminaries
For any missing notation or reference, let us refer to [9].

Throughout this article let G = (V,E) be a finite undirected graph without self-loops and multiple
edges and let |V | = n, |E| = m. Let U,W be any two subsets of V . Let NU (W ) = {u ∈ U \W | uv ∈
E} be the set of neighbors ofW inU . IfU = V , then let us writeN(W ) instead ofNV (W ). IfW = {v},
then let us write NU (v) instead of NU ({v}). Let us say that U has a join (a co-join, respectively) to W , if
each vertex in U is adjacent (is nonadjacent) to each vertex in W . Let v ∈ V . Let us say that: v contacts
U if v is adjacent to some vertex of U ; v dominates U if v is adjacent to each vertex of U ; v is partial to
(or distinguishes) U if v contacts U but does not dominate U . Then let us say that U is a module of G
if no vertex of V \ U distinguishes U .

Let G[U ] denote the subgraph of G induced by the vertex subset U . For any graph F , G is F -free if G
contains no induced subgraph isomorphic to F .

GraphG is connected if for any pair of vertices ofG there exists a path inG joining them. A component
of G is a maximal connected subgraph of G. A component-set of G is the vertex set of a component of G.

For any U,W ⊂ V with U ∩W = ∅, let C(U,W ) denote the family of component-sets of G[U ] which
are distinguished by some vertex of W , and let V (C(U,W )) denote the union of the elements of C(U,W )
(then V (C(U,W )) ⊆ U ).

The following specific graphs are mentioned here. A Pk has vertices v1, v2, . . . , vk and edges vjvj+1

for 1 ≤ j < k. A Ck has vertices v1, v2, . . . , vk and edges vjvj+1 for 0 ≤ j ≤ k − 1 (index arithmetic
modulo k).

Let us report from [16] (in a less deep form) a structure result on bipartite P6-free graphs, together with
its application to MWS.

A bipartite graph G = (S1 ∪ S2, E) is complete if E = S1 × S2. Given a bipartite graph G =

(S1 ∪ S2, F ), the bi-complemented graph G
bip

is the graph having the same vertex set S1 ∪ S2 as G
while its edge set is equal to (S1 × S2) \ F .

Theorem 1 ([16]) Let G = (S1 ∪ S2, F ) be a connected bipartite P6-free graph. Then one of the follow-
ing cases (which can be verified in O(n+m) time) occurs:

(i) G
bip

is disconnected;
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(ii) there exist S∗1 ⊆ S1 and S∗2 ⊆ S2 such thatG[S∗1∪S∗2 ] is complete bipartite, and (S1\S∗1 )∪(S2\S∗2 )
is a stable set. 2

Theorem 2 ([16]) The MWS problem can be solved for bipartite P6-free graphs in O(n+m) time. 2

Let us report from [10] the following result.

Theorem 3 ([10]) The MWS problem can be solved for (P6,triangle)-free graphs in O(n2) time. 2

Obviously, the MWS problem on a graph G with vertex weight function w can be split to the same
problem on subgraphs G[V \N(v)] and G[V \ {v}] for any v ∈ V in the following way:

αw(G) = max{αw(v) + αw(G[V \N(v)]), αw(G[V \ {v}])}

Thus, whenever one detects a vertex v ∈ V such that MWS can be solved forG[V \N(v)] in polynomial
time, the problem can be reduced to G[V \ {v}]. Such an approach, often called as antineighborhood (or
non-neighborhood) approach, will concern directly or indirectly each section of this article.

3 Stable Sets in P6-Free Graphs
Throughout this section let G = (V,E) be a connected P6-free graph and let:
B be any stable set of G, and A = V \B;
Z = {Z1, . . . , Zm} = C(A,B);
B∗ = {b ∈ B : b contacts all the elements of Z}.

Lemma 1 B∗ 6= ∅.

Proof: The proof is by induction on the cardinality of Z.
The statement of Lemma 1 is obviously satisfied in case of |Z| = 1.
Then let us assume that the statement of Lemma 1 holds true for |Z| ≤ m − 1, and prove that it holds

true for |Z| = m. Assume to the contrary that B∗ = ∅, i.e., that there exists no vertex of B contacting
all the elements of Z. By the inductive assumption, let b ∈ B contact each element of {Z2, . . . , Zm}.
Then b does not contact Z1 (by assumption of contradiction). Let b1 ∈ B be partial to Z1. If b1 contacts
some element of {Z2, . . . , Zm}, then b1 contacts all the elements of {Z2, . . . , Zm}: in fact, if m = 2,
then the assertion follows trivially, while if m ≥ 3, then the assertion follows since otherwise a P6 arises
involving two vertices of Z1, b1 and b. Then b1 contacts no element of {Z2, . . . , Zm} (by assumption of
contradiction). Notice that if a vertex v of V \ ({b1} ∪ Z1) contacts {b1} ∪ Z1, then v can not dominate
it: in fact, if v ∈ A then v does not contact Z1, while if v ∈ B then v does not contact {b1} since B is a
stable set. The same holds with {b} ∪ {Z2, . . . , Zm} instead of {b1} ∪ Z1. Then, since G is connected
P6-free, a shortest path from {b1} ∪ Z1 to {b} ∪ {Z2, . . . , Zm} contains exactly one vertex, i.e., there
exists a vertex v′ ∈ V contacting both {b1}∪Z1 and {b2}∪{Z2, . . . , Zm}. If v′ ∈ A, then two vertices of
Z1, b1, v′, b, and a vertex of Z2 induce a P6. If v′ ∈ B, then v′ contacts both Z1 and at least one element
of {Z2, . . . , Zm}, say Z2, while (by assumption of contradiction) v′ does not contact at least one element
of Z, say Zm: then a P6 is induced by a vertex of Zm, b, a vertex of Z2, v′, a vertex of Z1, and b1, a
contradiction. 2

Then let us focus on the case in which |Z| ≥ 2.
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Lemma 2 Assume that |Z| ≥ 2. Let b∗ ∈ B∗. Then one of the following statements holds:

(i) each component-set of G[V (Z) \N(b∗)] is dominated by a vertex of V (Z) ∩N(b∗);

(ii) b∗ dominates all the elements of Z except one, say Z1, and is the endpoint of an induced P4 formed
together with three vertices of Z1.

Proof: If b∗ dominates all the elements of Z, then V (Z) \ N(b∗) = ∅. If b∗ does not dominate exactly
one element of Z, say Z1, then since b∗ contacts Z1 (being b∗ ∈ B), either statement (i) or statement (ii)
holds (to avoid a P6, observing that b∗ is adjacent to a vertex of an element say Z2 6= Z1 of Z). If b∗

does not dominate at least two elements of Z, then statement (i) holds: in fact, let K be a component of
G[V (Z)\N(b∗)]; since b∗ ∈ B∗, there exists a ∈ V (Z)∩N(b∗) contactingK; in particular, a dominates
K, otherwise a P6 arises formed by two vertices of K, a, b∗, and two vertices of an element Zi of Z not
dominated by b∗ (for which one has Zi ∩K = ∅). 2

Lemma 3 Assume that |Z| ≥ 2. Assume that no vertex of B∗ enjoys (i) of Lemma 2. Let b∗ ∈ B∗ enjoy
(ii) of Lemma 2. Let Y = {b ∈ B : b distinguishes some element of C(Z1 \N(b∗), B)}. Let ȳ ∈ Y such
that NZ1\N(b∗)(ȳ) is maximal under inclusion in {NZ1\N(b∗)(y) : y ∈ Y }. Then:

(i) ȳ contacts all the elements of C(Z1 \N(b∗), B);

(ii) for all Q ∈ C(Z1 \N(b∗), B), each component-set of G[Q \N(ȳ)] is dominated by some vertex of
Q ∩N(ȳ).

Proof: Let us prove statement (i). According to (ii) of Lemma 2, b∗ dominates all the elements of Z
except one, namely Z1, and is the endpoint of an induced P4 formed together with three vertices of Z1.
Let X = {b ∈ B : b distinguishes some element of Z \ {Z1}}. Then for any Zi ∈ Z with i 6= 1 there
exists xi ∈ X distinguishing Zi. Then every vertex of X contacts Z1 (otherwise a P6 arises involving
any vertex of X , an element of Z contacted by such a vertex, b∗ and three vertices of Z1). It follows that
for any two vertices xi, xj ∈ X with xi distinguishing Zi and xj distinguishing Zj , either xi contacts Zj

or xj contacts Zi (otherwise a P6 arises). This implies that there exists a vertex x ∈ X contacting all the
elements of Z \ {Z1}. Then x contacts all the elements of Z. Since no vertex of B enjoys (i) of Lemma
2, x is the endpoint of an induced P4 of G together with three vertices of an element of Z \ {Z1}, say
Z2, and dominates Zi for every i 6= 2. Then x 6∈ Y . Then: each vertex of Y contacts Z2, otherwise any
vertex of Y , a vertex of Z1, x and three vertices of Z2 induce a P6. Now, by contradiction assume that ȳ
does not contact an element Q of C(Z1 \N(b∗), B). Let y ∈ Y be partial to Q. Then, by definition of ȳ,
there exists z ∈ Z1 \N(b∗) adjacent to ȳ and nonadjacent to y. Notice that z is nonadjacent to any vertex
of Q, since z belongs to a different component-set of G[Z1 \ N(b∗)]. Then, since both y and ȳ contact
Z2, a P6 arises, a contradiction.

Let us prove statement (ii). Let Q be any element of C(Z1 \ N(b∗), B) not dominated by ȳ. By
statement (i), ȳ contacts Q. Then, each component-set K of G[Q \N(ȳ)] is contacted by some vertex q
ofQ∩N(ȳ), and in particular is dominated by q, otherwise a P6 arises formed by two elements ofK,q, ȳ,
a vertex of Z2, and b∗. 2
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4 Reductions for MWS on (P6,Kp)-Free Graphs
In this section let us apply the properties of the previous section to introduce two reductions for MWS on
(P6,Kp)-free graphs, for p ≥ 3, both relying to the following definition.

Definition 1 A graph G = (V,E) is locally F -free, where F is any fixed graph, if V admits a partition
{A,B} such that G[A] is F -free and B is a stable set.

The following general observations will be often used later.

Observation 1 Let G = (V,E) be a graph and W be a subset of V . Assume that MWS can be solved for
each induced subgraph of G[W ] in polynomial time. Then while showing that MWS can be solved for G
in polynomial time, W \ V (C(W,V \W )) can be treated as a stable set.

Proof: In fact one can contract each component-set K of G[W ] which is a module of G into a singleton
k with w(k) = αw(G[K]). That can be done in polynomial time by assumption. 2

Observation 2 Let G = (V,E) be a graph, and U ⊆ V with |U | = k. If one can solve MWS for each
subgraph of G[V \ U ] in time T , then one can solve MWS for G in time 2k(T + n2).

Proof: Let I(U) be the family of stable sets of G[U ]. Then to solve MWS for G one can solve MWS for
|I(U)| subgraphs of G, i.e., for G[V \ U ] and for G[I ∪ (V \ (N(I) ∪ U))] for every I ∈ I(U). Since
|I(U)| ≤ 2k, and since V \ (N(I) ∪ U) can be computed in O(n2) for every I ∈ I(U), the assertion
follows. 2

4.1 From (P6,Kp+1)-Free to (P6, Locally Kp)-Free Graphs
The next lemma shows that the difficulty of solving MWS for (P6,Kp+1)-free graphs can be reduced to
that of solving MWS for (P6, locally Kp)-free graphs.

Lemma 4 If MWS can be solved for (P6, locally Kp)-free graphs in O(nt) time for some natural t, then
MWS can be solved for (P6,Kp+1)-free graphs in O(nt+p−1) time.

Proof: Let G = (V,E) be a (P6,Kp+1)-free graph. Assume without loss of generality that G is con-
nected. To prove the lemma, let us show that for any v ∈ V one can solve MWS for G[V \ N(v)] in
O(nt+p−2) time.

Let v ∈ V . Let H be any component-set of G[V \N(v)]. Since G is connected, there exists u ∈ N(v)
contacting H . Let us write: A = H ∩ N(u) and B = H \ N(u). Then {A,B} is a partition of G[H].
Since G is Kp+1-free, G[A] is Kp-free.

Now to solve MWS for G[H] one can proceed as follows: (i) compute a maximum weight stable set of
G[B], (ii) compute a maximum weight stable set of G[H] containing at least one vertex of A, and finally
(iii) choose a best solution, i.e., one of maximum weight.

To compute a maximum weight stable set of G[B] one can proceed as follows.

Claim 1. MWS can be solved for G[B] in O(nt) time.
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Proof: To prove the claim, by the assumption of the lemma, it is sufficient to show that G[B] can be
treated as a locally Kp-free graph. Let Q be a component-set of G[B]. Since G[H] is connected, there
exists a ∈ A such that Q ∩ N(a) 6= ∅. Let Q1 = Q ∩ N(a) and Q2 = Q \ N(a). Then {Q1, Q2}
is a partition of Q. Since G is Kp+1-free, G[Q1] is Kp-free. Let K be any component-set of G[Q2].
Then, to avoid a P6 involving v, u, a, each vertex of Q1 either dominates or does not contact K. Then
K is a module of G[Q]: in particular, since G is Kp+1-free, G[K] is Kp-free. Then one can contract K
into a singleton k with w(k) = αw(K): since G[K] is Kp-free that can be done in polynomial time by
assumption. Then one can treat Q2 as a stable set, and the assertion follows. 2

To compute a maximum weight stable set of G[H] containing at least one vertex of A one can proceed
as follows.

For any A′ ∪ B′ with A′ ⊆ A and B′ ⊆ B, let us define the brown decomposition of A′ ∪ B′ by the
following two steps:

Step 1. First define a binary relation ’≥’ on A′, such that for any x, y ∈ A′ one has x ≥ y if NB′(x) ⊇
NB′(y). Clearly, (A′,≥) is a partially ordered set. Then define a topological total order ’>’ on A′

with respect to (A′,≥): let us write A′ = {a1, . . . , at}, with a1 > a2 > . . . > at, so that if ai ≥ aj
then ai > aj for any pair of indices i, j.

Step 2. Decompose A′ ∪ B′ into the following subsets: W ′1 = {a1} ∪ [A′ \ N(a1)] ∪ [B′ \ N(a1)],
W ′2 = {a2} ∪ [(A′ \ {a1}) \ N(a2)] ∪ [B′ \ N(a2)], . . ., W ′t = {at} ∪ [(A′ \ {a1, . . . , at−1}) \
N(at)] ∪ [B′ \N(at)]. Let us say that sets W ′k for k = 1, . . . , t are the children of A′ ∪B′.

Let us observe that any maximum weight stable set of G[A′ ∪ B′] is contained in (exactly) one of the
graphs G[W ′1], . . . , G[W ′t ]; in particular MWS can be efficiently solved for G[A′ ∪ B′] as soon as it can
be so for graphs G[W ′1], . . . , G[W ′t ], i.e., one has αwG[A′ ∪B′] = maxk=1,...,t{αwG[W ′k]}.

A sufficient condition to efficiently solve MWS for graph G[W ′k], for some k = 1, . . . , t, is the follow-
ing: If no vertex of {ak}∪(A′ \{a1, . . . , ak−1})\N(ak) distinguishes any component-set ofB′ \N(ak),
then by Observation 1 and Claim 1, B′ \N(ak) can be treated as a stable set: then G[W ′k] can be treated
as a locally Kp-free graph and MWS can be solved for G[W ′k] in O(nt) time by assumption. Let us say
that G[W ′k] is a good subgraph of G[H] if this fact holds.

Then let us consider the following recursive Procedure Brown (A ∪B):

(1) Apply the brown decomposition to A ∪B.

(2) For every child Wk of A ∪ B, with k = 1, . . . , |A|, do: if G[Wk] is not a good subgraph of G, then
apply Procedure Brown (Wk).

This procedure may be represented by a tree T (H) whose root is A ∪ B, the children of A ∪ B are
W1,W2, . . . ,Wt, which are in turn the roots of subtrees representing the (possible) brown decomposition
of W1,W2, . . . ,Wt. Each leaf of T (H) corresponds to a good subgraph of G[H].

Claim 2. Tree T (H) contains O(np−2) nodes.

Proof: To prove the claim, let us show that the depth of T (H) is less or equal p.
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Let W ′k = {ak} ∪ [(A′ \ {a1, . . . , ak−1}) \N(ak)]∪ [B′ \N(ak)] be a node of T (H) having a leaf of
T (H) as a child. Then G[W ′k] is not good, i.e., there exists a vertex x ∈ (A′ \ {a1, . . . , ak−1}) \N(ak)
distinguishing a component-set Q of G[B′ \ N(ak)]. Let A′ ∪ B′ be the father of W ′k. As x ∈ (A′ \
{a1, . . . , ak−1}) \ N(ak), with respect to the topological total order ’>’ one has ak > x (otherwise
x ∈ {a1, . . . , ak−1}). Thus, since x is adjacent to a vertex of B′ \ N(ak), there exists a vertex b1 ∈ B′
adjacent to ak and nonadjacent to x. Then to avoid that b1, ak, u, x, and two vertices of Q induce a P6,
b1 contacts Q. To avoid that v, u, ak, b1, and two vertices of Q induce a P6, one has that: b1 dominates Q
and in particular Q ∪ {b1} contains a K3 (since Q is nontrivial); while ak distinguishes Q ∪ {b1}.

Notice that in T (H) if a nodeA′′∪B′′ is an ancestor ofA′∪B′, thenA′′ ⊃ A′ andB′′ ⊃ B′. Then the
argument of the previous paragraph can be iterated for the father of A′ ∪ B′, and so on until to reach the
root of T (H). At each iteration q, a new vertex bq is detected such that bq dominates Q∪ {b1, . . . , bq−1},
that is, a Kq+2 arises. Since G is Kp+1-free, at most p− 2 iterations are possible, and the claim follows.
2

By Claim 2, since by the above MWS can be solved for subgraphs of G[H] corresponding to the leaves
of T (H) (i.e., the good subgraphs of G[H]) in O(nt) time, since by the above MWS can be solved for
subgraphs of G[H] corresponding to the internal nodes of T (H) as soon as it can be solved for their
children, and since the root of T (H) corresponds to G[H], one has that a maximum weight stable set of
G[H] containing at least one vertex of A can be computed in O(nt+p−2).

This completes the proof of the lemma.
2

4.2 From (P6, Locally Kp)-Free to (P6, Kp)-Free Graphs (with one exception)
The next lemma shows that the difficulty of solving MWS for (P6, locally Kp)-free graphs, with related
partition {A,B}, can be reduced to that of solving MWS for (P6,Kp)-free graphs, except for the case in
which |C(A,B)| = 1.

Lemma 5 Let G = (V,E) be a connected (P6, locally Kp)-free graph, with related partition {A,B}. If
MWS can be solved for (P6,Kp)-free graphs in O(nt) time for some natural t, then:

(i) if |C(A,B)| = 0, then MWS can be solved for G in O(nt) time;

(ii) if |C(A,B)| ≥ 2, then there exists v ∈ V (i.e., v ∈ B and is easily detectable) such that MWS can
be solved for G[V \ {v}] in O(nt+1) time.

Proof: Let us recall that, by definition of locally Kp-free graph, G[A] is Kp-free and B is a stable set.
Let us prove statement (i). If |C(A,B)| = 0, then by Observation 1 and since MWS can be solved for

(P6,Kp)-free graphs in O(nt) time, A can be treated as a stable set in O(nt) time. Then G can be treated
as a bipartite graph and the statement follows.

Let us prove statement (ii). For brevity, let us writeZ = C(A,B). By Observation 1 and by assumption,
A \ V (Z) can be treated as a stable set in O(nt) time.

By Lemma 1, there exists at least one vertex ofB contacting all the elements ofZ. LetB∗ = {b ∈ B : b
contacts all the elements of Z}.

If there is b ∈ B∗ enjoying (i) of Lemma 2, then since G[A] is Kp-free each component of G[V (Z) \
N(b)] is Kp−1-free: then G[V \ N(b)] is Kp-free, and MWS can be solved for G[V \ N(b)] in O(nt)
time by assumption.
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Then assume that no vertex of B∗ enjoys (i) of Lemma 2. Let b∗ ∈ B∗ enjoy (ii) of Lemma 2.
Then b∗ dominates all the elements of Z apart from one, say Z1, and is partial to Z1. Let Y = {b ∈ B :

b distinguishes some element of C(Z1 \N(b∗), B)}. Let ’≥’ be a binary relation on Y , such that for any
u, v ∈ Y one has u ≥ v if NZ1\N(b∗)(u) ⊇ NZ1\N(b∗)(v). Clearly, (Y,≥) is a partially ordered set. Then
one can define a topological total order ’>’ on Y with respect to (Y,≥): let us write Y = {y1, . . . , yh},
with y1 > y2 > . . . > yt, so that if yi ≥ yj then yi > yj for any pair of indices i, j.

One can solve MWS in G[V \ N(b∗)] by solving MWS in: G[{y1} ∪ (V \ N(b∗) \ N(y1))], in
G[{yi} ∪ (V \N(b∗) \ {y1, . . . , yi−1} \N(yi))] for i = 2, . . . , h, and in G[V \N(b∗) \ Y ]. Concerning
MWS for G[{y1} ∪ (V \N(b∗) \N(y1))]: by Observation 1 and since MWS can be solved for (P6,Kp)-
free graphs inO(nt) time, Z1\N(b∗)\V (C(Z1\N(b∗), B) can be treated as a stable set; then, by Lemma
3, each component of G[Z1 \ N(b∗) \ N(y1)] can be treated as a Kp−1-free graph; then G[{yi} ∪ (V \
N(b∗) \N(y1))] can be treated as a Kp-free graph, and MWS can be solved for G[V \N(b∗) \N(y1)]
in O(nt) time by assumption. Similarly, by the mentioned total order, MWS can be solved for each of
the remaining mentioned graphs in O(nt) time. Then MWS can be solved for G[V \N(b∗)] in O(nt+1)
time. 2

Let us point out the following easy sub-result of Lemma 5, referred to k-colorable graphs, which will
be useful later.

Lemma 6 Let G = (V,E) be a connected k-colorable P6-free graph G = (V,E), where {A,B} is a
partition of V with G[A] (k− 1)-colorable and B stable set. If MWS can be solved for (k− 1)-colorable
P6-free graphs, in O(nt) time for some natural t, then:

(i) if |C(A,B)| = 0, then MWS can be solved for G in O(nt) time;

(ii) if |C(A,B)| ≥ 2, then there exists v ∈ V (i.e., v ∈ B and is easily detectable) such that MWS can
be solved for G[V \ {v}] in O(nt+1) time. 2

5 Some Polynomially Solvable Cases for MWS
In this section let us prove that MWS can be solved for P6-free graphs being respectively (i) 3-colorable,
(ii) 4-colorable, and (iii) K4-free. The case (i) is somehow basic and is applied in the other two cases.
The cases (i)-(ii) require Lemma 6, while the case (iii) requires Lemma 4.

5.1 MWS for 3-Colorable P6-Free Graphs
To solve MWS for 3-colorable P6-free graphs, let us follow the idea of Brandstädt and Hoàng in [8],
where the authors combine two decomposition approaches, namely by homogeneous sets and by clique
separators, in order to obtain a binary tree which gives a refinement of the decompositions obtained
separately. Here we combine two ”local” decomposition approaches, namely by Theorem 1 of Fouquet,
Giakoumakis and Vanherpe on bipartite P6-free graphs and by Lemma 6, in order to obtain a binary tree
which gives a refinement of the decompositions obtained separately.

Let G = (V,E) = (V1 ∪ V2 ∪ V3, E) be a 3-colorable P6-free graph. Let us write: A = V1 ∪ V2;
B = V3; Z = C(A,B).

By Observation 1 and Theorem 2, A\V (Z) can be treated as a stable set: in particular, if |Z| = 0, then
G can be treated as a bipartite graph.
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The method will adopt the following four decompositions of a 3-colorable P6-free graphG into at most
four subgraphs G1, G2, G3, G4, in order that if the MWS problem can be solved for G1, G2, G3, G4 in
polynomial time, then so can the problem for G.

Case 1. If G is disconnected, then G is decomposed into subgraphs G1 = G[W1] and G2 = G[W2],
where {W1,W2} is any partition of V such thatW1 has a co-join toW2 inG. In particular αw(G) =
αw(G1) + αw(G2).

Case 2. If G is connected, |Z| = 1 (i.e., let Z = {T} where G[T ] = (S1 ∪ S2, F ) is a connected
bipartite graph), and G[T ] fulfills the condition (i) of Theorem 1 (i.e., let {L,R} be any partition of

T such that L has a co-join to R in G[T ]
bip

), then G is decomposed into subgraphs G1 = G[W1],
G2 = G[W2], G3 = G[W3], G4 = G[W4], where W1 = V \ V1, W2 = V \ S2, W3 = V \ L,
W4 = V \R. In particular, αw(G) = maxi=1,...,4{αw(Gi)}.
In fact let S be a maximum (weight) stable set of G: if S contains no vertex from S1, then S ⊆W1;
if S contains no vertex from S2, then S ⊆ W2; if F contains both a vertex from S1 and a vertex
from S2, then either S ⊆W3 or S ⊆W4, by the condition (i) of Theorem 1.

Case 3. IfG is connected, |Z| = 1 (i.e., let Z = {T} whereG[T ] = (S1∪S2, F ) is a connected bipartite
graph), and G[T ] fulfills the condition (ii) of Theorem 1, then G is decomposed into subgraphs
G1 = G[W1] and G2 = G[W2], where W1 = V \ S∗1 and W2 = V \ S∗2 . In particular, αw(G) =
maxi=1,2{αw(Gi)}.
In fact let S be a maximum (weight) stable set ofG: if S contains no vertex from S∗1 , then S ⊆W1;
if S contains no vertex from S∗2 , then S ⊆W2; the case in which S contains both a vertex from S∗1
and a vertex from S∗2 can not occur, since S∗1 has a join to S∗2 , by the condition (ii) of Theorem 1.

Case 4. If G is connected, |Z| ≥ 2, and B 6= ∅ (i.e., G admits a vertex v according to Lemma 6 (ii)),
then G is decomposed into subgraphs G1 = G[W1] and G2 = G[W2], where W1 = V \N(v) and
W2 = V \ {v}. Let us say that the graph G1 obtained by such a decomposition is a good subgraph
of G. In particular, αw(G) = maxi=1,2{αw(Gi)}.

Then let us consider the following recursive Procedure Gray (G):

(1) DecomposeG according to one of the above four decompositions, depending on the case, so to obtain
graphs (at most) G1, G2, G3, G4.

(2) For every Gk, with k = 1, . . . , 4, do: if Gk is not bipartite and if Gk is not a good subgraph of G,
then apply Procedure Gray (Gk).

This procedure may be represented by a tree T (G) whose root is G, the children of G are (at most)
G1, G2, G3, G4, which are in turn the roots of subtrees representing the (possible) decomposition of
G1, G2, G3, G4. Each leaf of T (G) corresponds either to a bipartite subgraph of G or to a good sub-
graph of G.

Lemma 7 Tree T (G) contains O(n3) nodes.
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Proof: Let us show that each internal node of T (G) can be labeled with a distinct 3-tuple (x, y, z) where
x, y, z are three vertices of G. One only needs to label internal nodes that correspond to graphs with at
least three vertices.

Let GH denote the induced subgraph of G that corresponds to an internal node H of T (G).
If G is decomposed by Case 1 into graphs G1, G2, then label H with (x, y, z) where: x is any vertex in

G1, while y, z are two adjacent vertices of A in G2. Let us say H is a node of type 1.
If G is decomposed by Case 2, then label H with (x, y, z) where: x is any vertex in G, y is any vertex

of L, z is any vertex of R, such that y is adjacent to z. Let us say H is a node of type 2.
If G is decomposed by Case 3, then label H with (x, y, z) where: x is any vertex of G, y is any element

of S∗1 , z is any element of S∗2 (then y is adjacent to z). Let us say H is a node of type 3.
If G is decomposed by Case 4, then label H with (x, y, z) where: x = v, while y, z are two adjacent

vertices of A. Let us say H is a node of type 4.
Assume that there are two nodes H , K in T (G) with the same 3-tuple (x, y, z); in particular one has

x, y, z ∈ GH ∩GK .
Suppose first that K is a descendent of H . The above choice of the labels implies that, whether H

is of type 1 or 2 or 3 or 4, there is at least one vertex in the label of GH that does not belong to GK , a
contradiction.

Now, one may assume that K is not a descendent of H and H is not a descendent of K. Let J be the
lowest common ancestor of H and K in T (G). For simplicity, one may assume that H(K) either is the
left (right) child of J , or is a descendent of the left (right) child of J . If J is a node of type 1, then H
and K have no vertex in common, and thus cannot have the same 3-tuple. If J is a node of type 2 or 3,
then GH [A] and GK [A] have no edge (i.e., no pair of adjacent vertices) in common; then, since for each
internal nodeQ of T (G) the elements y, z of the 3-tuple (x, y, z) ofQ are adjacent vertices ofGQ[A], one
has that H and K can not have the same 3-tuple (x, y, z). If J is a node of type 4, then either H or K is a
yellow subgraph of G, i.e., a leaf of T (G), a contradiction since H and K are internal nodes of T (G). 2

Then Lemma 7 implies:

Corollary 1 If the MWS problem can be solved in polynomial time for every bipartite subgraph of G and
for every good subgraph of G, then so can the problem for G. 2

By Theorem 2 MWS can be solved for bipartite subgraphs of G in O(n + m) time. By Lemma 6 MWS
can be solved for good subgraphs of G in O(nm) time. Then Corollary 1 implies:

Theorem 4 The MWS problem can be solved for 3-colorable P6-free graphs in O(n4m) time. 2

5.2 MWS for 4-Colorable P6-Free Graphs
Let G = (V,E) = (V1 ∪ V2 ∪ V3 ∪ V4, E) be a 4-colorable P6-free graph. Let us write: A = V1 ∪ V2,
B = V3, C = V4.

Lemma 8 If |C(A,B)| = 0 or |C(A,C)| = 0, then MWS can be solved for G in O(n6m) time.

Proof: By symmetry, the proof is given only for the case in which |C(A,C)| = 0. Without loss of
generality, assume that G is connected. To prove the lemma let us show that either MWS can be solved
for G in O(n4m) time, or there exists a vertex v ∈ V such that MWS can be solved for G[V \N(v)] in
O(n5m) time. Then one can (possibly) iteratively apply this argument to each component of G[V \ {v}].
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Assume that |C(A ∪ B,C)| = 0. Then by Lemma 5 (i) and Theorem 4, MWS can be solved for G in
O(n4m) time.

Assume that |C(A ∪ B,C)| ≥ 2. Then by Lemma 5 (ii) and Theorem 4, there exists c ∈ C such that
MWS can be solved for G[V \N(c)] in O(n5m) time.

Assume that |C(A ∪B,C)| = 1. Let us write C(A ∪B,C) = {Q}. By Observation 1 and Theorem 4,
(A ∪B) \Q can be treated as a stable set in O(n4m) time.

If |C(A ∩ Q,B ∩ Q)| = 0, then since |C(A,C)| = 0 (and thus |C(A ∩ Q,C)| = 0), by Observation
1 and Theorem 2, A ∩ Q can be treated as a stable set; then G can be treated as a 3-colorable graph and
MWS can be solved for G in O(n4m) time.

If |C(A ∩Q,B ∩Q)| = 1, then let us write C(A ∩Q,B ∩Q) = {T}. Since |C(A,C)| = 0 (and thus
|C(A ∩ Q,C)| = 0), by Observation 1 and Theorem 2, (A ∩ Q) \ T can be treated as a stable set. If no
vertex of C contacts T , then G is 3-colorable and MWS can be solved for G in O(n4m) time. If some
vertex of C, say c, contacts T , then c dominates T since |C(A,C)| = 0; then G[V \N(c)] is 3-colorable
and MWS can be solved for G[V \N(c)] in O(n4m) time.

If |C(A ∩ Q,B ∩ Q)| ≥ 2, then since |C(A,C)| = 0 and G[(A ∩ Q) ∪ (B ∩ Q)] is connected being
G[Q] connected, one can apply an argument similar to that of Lemma 5 to show that there exists b ∈ B
such that MWS can be solved forG[V \N(b)] inO(n5m) time (i.e., by reducing the problem to instances
of 3-colorable graphs). 2

Let us say thatG isC-compact if the following facts hold: (i) |C(A∪B,C)| = 1, say C(A∪B,C) = {Q};
(ii) |C(A ∩Q,B)| = |C(A ∩Q,C)| = 1; (iii) C(A ∩Q,B) = C(A ∩Q,C).

Lemma 9 If G is not C-compact, then there exists v ∈ V (easily detectable) such that MWS can be
solved for G[V \N(v)] in O(n7m) time.

Proof: Without loss of generality, assume that G is connected.
Assume that |C(A ∪ B,C)| = 0. Then by Lemma 5 (i) and Theorem 4, MWS can be solved for G in

O(n4m) time.
Assume that |C(A ∪ B,C)| ≥ 2. Then by Lemma 5 (ii) and Theorem 4, there exists v ∈ C such that

MWS can be solved for G[V \N(v)] in O(n5m) time.
Assume that |C(A∪B,C)| = 1, say C(A∪B,C) = {Q}. By Observation 1 and Theorem 4, (A∪B)\Q

can be treated as a stable set: then from now on let us assume that G[A ∪ B] is formed by one nontrivial
component, namely Q, and by isolated vertices.

Let |C(A ∩Q,B ∩Q)| = 0. Then |C(A,B)| = 0 and by Lemma 8 MWS can be solved for G in time
O(n6m).

Let |C(A∩Q,B∩Q)| = 1, say C(A∩Q,B∩Q) = {T}. SinceG is notC-compact, C(A∩Q,C) 6= {T}.
Then one of the following two cases occurs: (i) there exists a vertex c ∈ C (contacting and so) dominating
T : thenG[V \N(c)] enjoys the assumption of Lemma 8 (since |C((A∩Q)\N(c), (B∩Q)\N(c))| = 0)
and MWS can be solved for G[V \ N(c)] in O(n6m) time; (ii) there exists no vertex of C contacting
T : then (recalling that A = V1 ∪ V2, and that (A ∪ B) \ Q is a stable set) one can re-define A :=
A\(V2∩T )\((A∪B)\Q),B := B∪((A∪B)\Q) andC := C∪(V2∩T ), so that |C(A∩Q,B∩Q)| = 0
and then G enjoys the assumptions of Lemma 8 and MWS can be solved for G in time O(n6m).

Let |C(A ∩Q,B ∩Q)| ≥ 2. Let us write: A′ = A ∩Q, B′ = B ∩Q, C(A′, B′) = Z.
By Lemma 1 (which can be applied since Q is connected), there exists at least one vertex of B′ con-

tacting all the elements of Z. Let B∗ = {b ∈ B′ : b contacts all the elements of Z}.



Some Results on Stable Sets for k-Colorable P6-Free Graphs and Generalizations 51

If there is b ∈ B∗ enjoying (i) of Lemma 2, then since G[A′] is bipartite each component-set of
G[A′ \N(b)] is a stable set: then each component-set of G[A′ \N(b)] is not distinguished by any vertex
of B′. Then G[V \N(b)] enjoys the assumption of Lemma 8, and MWS can be solved for G[V \N(b)]
in O(n6m) time.

Then assume that no vertex of B∗ enjoys (i) of Lemma 2. Let b∗ ∈ B∗ enjoy (ii) of Lemma 2.
Then b∗ dominates all the elements of Z apart from one, say Z1, and is partial to Z1. Let Y = {b ∈ B′ :

b distinguishes some element of C(Z1 \N(b∗), B)}. Let ’≥’ be a binary relation on Y , such that for any
u, v ∈ Y one has u ≥ v if NZ1\N(b∗)(u) ⊇ NZ1\N(b∗)(v). Clearly, (Y,≥) is a partially ordered set. Then
one can define a topological total order ’>’ on Y with respect to (Y,≥): let us write Y = {y1, . . . , yh},
with y1 > y2 > . . . > yt, so that if yi ≥ yj then yi > yj for any pair of indices i, j.

One can solve MWS in G[V \ N(b∗)] by solving MWS in: G[{y1} ∪ (V \ N(b∗) \ N(y1))], in
G[{yi} ∪ (V \N(b∗) \ {y1, . . . , yi−1} \N(yi))] for i = 2, . . . , h, and in G[V \N(b∗) \ Y ]. Concerning
MWS for G[{y1} ∪ (V \N(b∗) \N(y1))]: by Lemma 3 and since G[A′] is bipartite, each component-set
of G[Z1 \N(b∗) \N(y1)] is either a stable set or is not distinguished by any vertex of B′ (anyway): then
each component-set of G[A′ \ N(b∗) \ N(y1)] is not distinguished by any vertex of B′; then G[{y1} ∪
(V \ N(b∗) \ N(y1))] enjoys the assumption of Lemma 8, and MWS can be solved for G[{y1} ∪ (V \
N(b∗) \N(y1))] in O(n6m) time. Similarly, by the mentioned total order, MWS can be solved in each of
the remaining mentioned graphs inO(n6m) time. Then MWS can be solved forG[V \N(b∗)] inO(n7m)
time. 2

At this point, MWS can be solved for G by a decomposition approach similar to that introduced for
3-colorable P6-free graphs in the previous subsection. In details:

If G is disconnected, then decompose G according to Case 1.
If G is connected and is C-compact (i.e., let C(A ∩ Q,B) = C(A ∩ Q,C) = {T}, where G[T ] =

(S1∪S2, F ) is a connected bipartite graph), then decomposeG according either to Case 2 (ifG[T ] fulfills
the condition (i) of Theorem 1), or to Case 3 (if G[T ] fulfills the condition (ii) of Theorem 1).

IfG is connected and is not C-compact, then decomposeG according to Case 4, by referring to Lemma
9 instead of Lemma 5.

Theorem 5 The MWS problem can be solved for 4-colorable P6-free graphs in O(n10m) time. 2

5.3 MWS for (P6, K4)-Free Graphs
Lemma 10 Let G = (V,E) be a connected (P6, locally triangle)-free graph, with related partition
{A,B}. If |C(A,B)| = 1, then there exists a vertex b ∈ B (easily detectable) such that MWS can be
solved for G[V \N(b)] in O(n5m) time.

Proof: Let us recall that, by definition of locally triangle-free graph (i.e., locally K3-free graph), G[A] is
triangle-free and B is a stable set.

Let C(A,B) = {Q}. By Observation 1 and Theorem 3, A \Q can be treated as a stable set.
If G[Q] is C5-free, then G[Q] is bipartite, i.e., G is 3-colorable and the lemma follows by Theorem 4.
Then assume that G[Q] contains a C5, say C, with vertices vi and edges vivi+1, i ∈ {0, . . . , 4} (index

arithmetic modulo 5). LetN(C) be the set of vertices fromQ\C which are adjacent to some vertex of C.
For any subset S of C, let MS be the set formed by those elements of N(C) which are adjacent to each
element of S and are nonadjacent to each element of C \ S. In particular, let us write M1 for S = {v1},
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M1,2 for S = {v1, v2}, and so on. Then let us denote as Z(k) the set of the vertices of V \C with exactly
k neighbors in C.

Since G[Q] is triangle-free: Z(5) ∪ Z(4) ∪ Z(3) = ∅; each vertex of Z(2) belongs to some of the
sets Mi,i+2, i ∈ {0, . . . , 4} (index arithmetic modulo 5); the sets Mi and Mi,i+2, i ∈ {0, . . . , 4} (index
arithmetic modulo 5), are stable sets. Since G[Q] is P6-free: Mi has a co-join to Mi−1 ∪Mi+1, and has a
join to Mi−2 ∪Mi+2, for every i ∈ {0, . . . , 4} (index arithmetic modulo 5). Since G[Q] is (P6,triangle)-
free: Z(0) has a co-join to Z(1); if a vertex z ∈ Z(2) contacts a component-set K of Z(0), then z
dominates K; (consequently, since G[Q] is triangle-free) Z(0) is a stable set.

Let us fix any vertex of C, say v2, and let us prove that MWS can be solved for G[V \ N(v2)] in
O(n5m).

A partition of Q \ N(v2) is given by {{v2, v4, v5},M1,M3,M4,M5,M1,3,M1,4,M3,5, Z(0)}. Then,
by Observation 2, to our aim it is sufficient to prove that MWS can be efficiently solved for (each induced
subgraph of) G[U ∪B], where a partition of U is given by {M1,M3,M4,M5,M1,3,M1,4,M3,5, Z(0)}.

Case 1. M1,4 ∪M3,5 = ∅
MWS can be solved in G[U ∪B] by solving MWS in G[(U \M1)∪B] and in G[(U \N(a))∪B],
for every a ∈M1.

That can be done in O(n5m) time. First, let us consider G[(U \M1) ∪ B]. Notice that {M3 ∪
M1,3,M4 ∪M5 ∪Z(0)} is a bipartition of U \M1. Then G[(U \M1)∪B] is 3-colorable, and the
assertion follows by Theorem 4. Then, let us consider G[U \N(a)] for some a ∈ M1. Notice that
(M3 ∪M4) \N(a) = ∅, otherwise a P6 arises. Thus {(M1 ∪M1,3) \N(a), (M5 ∪Z(0)) \N(a)}
is a bipartition of U \N(a). Then G[(U \N(a)) ∪ B] is 3-colorable, and the assertion follows by
Theorem 4.

Case 2. M1,4 ∪M3,5 6= ∅
MWS can be solved in G[U ∪B] by solving MWS in G[(U \ (M1,4 ∪M3,5)) ∪B] and in G[(U \
N(a)) ∪B], for every a ∈ (M1,4 ∪M3,5).

That can be done in O(n5m) time. Concerning G[U \ (M1,4 ∪M3,5) ∪ B], one can refer to Case
1. Then let us consider G[(U \ N(a)) ∪ B], for some a ∈ (M1,4 ∪ M3,5). Assume without
loss of generality, by symmetry, that a ∈ M3,5. Since G is P6-free: either M1 \ N(a) = ∅ or
M4 \N(a) = ∅; M5 \N(a) has a co-join to M1,4 \N(a). At this point, one can verify − by a not
complicated check which is omitted here − that G[U \N(a)] contains no C5, i.e., G[U \N(a)] is
bipartite. Then G[(U \N(a)) ∪B] is 3-colorable, and the assertion follows by Theorem 4.

2

Lemma 11 The MWS problem can be solved for (P6, locally triangle)-free graphs in O(n6m) time.

Proof: Let G be a (P6, locally triangle)-free graph. To prove the lemma let us show that either MWS
can be solved for G in O(n6m) time, or there exists a vertex v ∈ V such that MWS can be solved for
G[V \N(v)] inO(n5m) time. Then one can (possibly) iteratively apply this argument to each component
of G[V \ {v}].

By Observation 1 and Theorem 3, A\V (C(A,B)) can be treated as a stable set. If |C(A,B)| = 0, then
by Lemma 10 (i) MWS can be solved for G in O(n3) time. If |C(A,B)| = 1, then by Lemma 10 (ii)
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there exists v ∈ V such that one can solve MWS in O(n5m) time. If |C(A,B)| ≥ 2, then by Lemma 5
and Theorem 3 there exists v ∈ V such that MWS can be solved for G[V \N(v)] in O(n3) time. 2

By Lemmas 4 and 11 one obtains the following fact.

Theorem 6 The MWS problem can be solved for (P6,K4)-free graphs in O(n9m) time. 2

6 Conclusions
Let us formalize as possible open problem the natural extension of the polynomial results of this article.

Open Problem. What is the complexity of MWS for P6-free graphs which are either k-colorable for
k ≥ 5 or Kp-free for p ≥ 5?
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[8] A. Brandstädt, C.T. Hoàng, On clique separators, nearly chordal graphs and the Maximum Weight Stable Set
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7 Appendix: Stable sets in P6-free graphs II
This appendix is to introduce two lemmas which are not applied in the article. These lemmas actually are the report
of an unsuccessfully attempt to extend the polynomial results of this article. However we hope that they could be
useful to a reader for new results on this topic.

Let us adopt the notation of Section 3. Throughout this appendix also let:
W = A \ V (Z), with W 6= ∅;
b∗ ∈ B∗, such that NW (b∗) is maximal under inclusion in {NW (b) : b ∈ B∗};
B0 = {b ∈ B : b is adjacent to some vertex of W \N(b∗)}.

Lemma 12 B0 ⊂ B∗.

Proof: Let b0 ∈ B0 be adjacent to w ∈W \N(b∗). Let us prove the following claim.

Claim 1. b0 contacts at least one element of Z.

Proof: Assume that b1 is nonadjacent to w. Since G is connected P6-free and B is a stable set, there exists a vertex
c ∈ V contacting both {b0, w} and {b1} ∪ Z1: in particular c ∈ B, otherwise a P6 arises involving two vertices of
Z1. Then c is adjacent to w (thus c 6= b∗), and contacts Z1. Note that there exists z1 ∈ Z1 such that z1 is adjacent
to both c and b1, otherwise a P6 arises involving b0, w, c, two vertices of Z1, and b1. Similarly, there exists z∗1 ∈ Z1

such that z∗1 is adjacent to both c and b∗. It follows that c ∈ B∗: in fact, if c does not contact an element Zi of Z,
i 6= 1, then b0, w, c, z∗1 , b

∗ and a vertex of Zi induce a P6. Since c is adjacent to w, by definition of b∗ there exists
w∗ ∈W such that w∗ is adjacent to b∗ and nonadjacent to c. Then w∗ is adjacent to b0, otherwise w∗, b∗, z∗1 , c, w, b0
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induce a P6. Then w∗ is adjacent to b1, otherwise w∗, b0, w, c, z1, b1 induce a P6. But then w, b0, w
∗, b1 and two

vertices of Z1 induce a P6, a contradiction.
Assume that b1 is adjacent to w. Note that there exists z1 ∈ Z1 such that z1 is adjacent to both b1 and b∗, otherwise

a P6 arises involving b0, w, b1, two vertices of Z1, and b∗. It follows that b0 ∈ B∗: in fact, if b1 does not contact an
element Zi of Z, i 6= 1, then b0, w, b1, z1, b

∗ and a vertex of Zi induce a P6. Since b1 is adjacent to w, by definition of
b∗ there exists w∗ ∈W such that w∗ is adjacent to b∗ and is nonadjacent to b1. Then w∗ is adjacent to b0, otherwise
w∗, b∗, z1, b1, w, b0 induce a P6. But then w∗, b0, w, b1 and two vertices of Z1 induce a P6, a contradiction. 2

By Claim 1, b0 contacts at least one element of Z, say Z1. To show that b0 contacts each element of Z, assume to the
contrary there exists an element of Z, say Z2, such that b0 does not contact Z2. Let b2 ∈ B be partial to Z2.

Assume that b2 is nonadjacent to w. Then b2 6= b∗ otherwise w, b0, a vertex of Z1, b∗ and two vertices of Z2

induce a P6. Then b2 contacts Z1, otherwise w, b0, a vertex of Z1, b∗, a vertex of Z2 and b2 induce a P6. But then
w, b, a vertex of Z1, b2 and two vertices of Z2 induce a P6, a contradiction.

Assume that b2 is adjacent to w. Then b2 contacts each element Zi ∈ Z contacted by b0 (otherwise two vertices
of Z2, b2, w, b0, and a vertex of Zi induce a P6), and contacts each element Zj ∈ Z not contacted by b0 (otherwise
b0, w, b2, a vertex of Z2, b∗ and a vertex of Zj induce a P6). That is, b2 ∈ B∗. Since b2 is adjacent to w, by
definition of b∗ there exists w∗ ∈ W such that w∗ is adjacent to b∗ and is nonadjacent to b2. Then w∗ is adjacent to
b0, otherwise w∗, b∗, a vertex of Z2, b2, w, b0 induce a P6. But then w∗, b0, w, b2 and two vertices of Z2 induce a
P6, a contradiction. 2

Lemma 13 Assume that |Z| ≥ 2. Let Y = {b ∈ B : b distinguishes some element of C(V (Z) \N(b∗), B)}. Then:

(i) no vertex in B0 distinguishes any component-set of G[V (Z) \N(b∗)];
(ii) each y ∈ Y contacts exactly one element of Z;

(iii) Y has a co-join to W ;
(iv) B0 has a co-join to V (C(V (Z) \N(b∗), B)).

Proof: Let us prove statement (i). Let b0 ∈ B0. Assume to the contrary that there exists a component Q of
G[V (Z) \ N(b∗)] such that b0 distinguishes Q. Assume without loss of generality that Q ⊂ Z1. Since |Z| ≥ 2,
there exists Z2 ∈ Z. By Lemma 12, b0 ∈ B∗. Since b0 ∈ B0, by definition of b∗ there exists w∗ ∈ W such that
w∗ is adjacent to b∗ and is nonadjacent to b0. Then w∗, b∗, a vertex of Z2, b0 and two vertices of Q induce a P6, a
contradiction.

Let us prove statement (ii). Let y ∈ Y . Assume without loss of generality that y distinguishes a component-set Q
of G[V (Z) \N(b∗)]. Let us show that y does not contact any Zi ∈ Z, for every i 6= 1. Assume to the contrary that
y contacts Zi ∈ Z for some i 6= 1. Let w ∈ W \ N(b∗), and let b ∈ B be adjacent to w. By Lemma 12 b ∈ B∗.
By statement (i) and by definition of Y , y is nonadjacent to w. By definition of b∗, let w∗ ∈ W ∩ N(b∗) such that
w∗ is adjacent to b∗ and nonadjacent to b. If y is adjacent to w∗, then: if b contacts Q, then w, b, a vertex of Q,
y, w∗, b∗ induce a P6; if b does not contact Q, then w, b, a vertex of Zi, y and two vertices of Q induce a P6. If y is
nonadjacent to w∗, then w∗, b∗, a vertex of Zi, y and two vertices of Q induce a P6 a contradiction.

Let us prove statement (iii). Let y ∈ Y . Let w∗ ∈ W ∩ N(b∗), and w ∈ W \ N(b∗). Assume without loss
of generality that y distinguishes a component-set Q of G[Z1 \ N(b∗)]. By statement (ii), y does not contact say
Z2. Then y in nonadjacent to w∗, otherwise a vertex of Z2, b∗, w∗, y and two vertices of Q induce a P6. Also, y is
nonadjacent to w, otherwise by Lemma 12 one should have y ∈ B∗, which contradicts statement (ii).

Let us prove statement (iv). Let b0 ∈ B0. Assume to the contrary b0 contacts (and thus dominates, by Lemma 12)
a component-set Q of say G[V (Z) \N(b∗)] (without loss of generality), such that there exists y ∈ B distinguishing
Q (thus y ∈ Y ). Then by statement (ii), y does not contact any Zi ∈ Z, for every i 6= 1. By definition of b∗, there
exists w∗ ∈W such that w∗ is adjacent to b∗ and nonadjacent to b0. By statement (iii), w∗ is nonadjacent to y. Then
w∗, b∗, a vertex of say Z2, b0, a vertex of Q and y induce a P6, a contradiction. 2
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