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Giving a planar graphG, let χ′
l(G) and χ′′

l (G) denote the list edge chromatic number and list total chromatic number
of G respectively. It is proved that if G is a planar graph without non-induced 7-cycles, then χ′

l(G) ≤ ∆(G) + 1 and
χ′′
l (G) ≤ ∆(G) + 2 where ∆(G) ≥ 7.
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1 Introduction
The terminology and notation used but undefined in this paper can be found in [1]. Let G be a graph
and we use V (G), E(G), F (G), ∆(G) and δ(G) to denote the vertex set, edge set, face set, maximum
degree, and minimum degree of G, respectively. Let dG(x) or simply d(x), denote the degree of a vertex
(resp. face) x in G. A vertex (resp. face) x is called a k-vertex (resp. k-face), k+-vertex (resp.
k+-face), or k−-vertex, if d(x) = k, d(x) ≥ k, or d(x) ≤ k. We use (d1, d2, · · · , dn) to denote a
face f if d1, d2, · · · , dn are the degrees of vertices which are incident with the face f . If u1, u2, · · ·, un
are the vertices on the boundary walk of a face f , then we write f = u1u2 · · ·un. Let δ(f) denote the
minimal degree of vertices which are incident with f . We use fi(v) to denote the number of i-faces which
are incident with v for each v ∈ V (G). Let ni(f) denote the number of i-vertices which are incident
with f for each f ∈ F (G). A cycle C of length k is called k-cycle, and if there is at least one edge
xy ∈ E(G)\E(C) and x, y ∈ V (C), the cycle C is called non-induced k-cycle.

The mapping L is said to be a total assignment for a graphG if it assigns a list L(x) of possible colors
to each element x ∈ V (G)∪E(G). IfG has a proper total coloring φ(x) ∈ L(x) for all x ∈ V (G)∪E(G),
then we say thatG is total-L-colorable. Let f : V (G)∪E(G)→ N where f is a function into the positive
integers. We say that G is total-f -choosability if it is total-L-colorable for every total assignment L
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satisfying |L(x)| = f(x) for all x ∈ V (G) ∪ E(G). The list total coloring number χ′′l (G) of G is
the smallest integer k such that G is total-f -choosability when f(x) = k for each x ∈ V (G) ∪ E(G).
The list edge coloring number χ′l(G) of G is defined similarly in terms of coloring edges alone; and
so is the concept of edge-f -choosability. On the list coloring number of a graph G, there is a famous
conjecture known as the List Coloring Conjecture.

Conjecture 1 For a multigraph G,

(a) χ′l(G) = χ′(G); (b) χ′′l (G) = χ′′(G).

Part (a) of Conjecture 1 was formulated independently by Vizing, by Gupta, by Alberson and Collins,
and by Bollobás and Harris [6, 11]. It is well known as the List Coloring Conjecture. Part (b) was
formulated by Borodin, Kostochka and Woodall [2]. Part (a) has been proved for bipartite multigraphs
[5]. Part (a) and Part (b) have been proved for outerplanar graphs [15], and graphs with ∆ ≥ 12 which
can be embedded in a surface of nonnegative characteristic [2]. There are several related results for planar
graphs, such as planar graphs without 4-cycles by Hou et al.[9], planar graphs without 4- and 5-cycles
or planar graphs without intersecting 4-cycles by Liu et al.[13], planar graphs without triangles adjacent
4-cycles by Li et al.[14], planar graphs without intersecting triangles by Sheng et al.[18].

To confirm Conjecture 1 is a challenging work. From the Vizing Theorem and the Total Coloring
Conjecture, the following weak conjecture is presented.

Conjecture 2 For a multigraph G,

(a) χ′l(G) ≤ ∆(G) + 1; (b) χ′′l (G) ≤ ∆(G) + 2.

Part (a) of Conjecture 2 has been proved for complete graphs of odd order [7]. Wang et al. confirmed
part (a) of Conjecture 2 for planar graphs without 6-cycles or without 5-cycles [17, 16]. Zhang et al.
proved part (a) of Conjecture 2 for planar graphs without triangles [19]. Hou et al. proved part (a) of
Conjecture 2 for planar graphs without adjacent triangles or 7-cycles [8]. Cai et al. confirmed part (a) of
Conjecture 2 for planar graphs without chordal 5-cycles [3]. Part (b) of Conjecture 2 was proved by Hou
et al. for planar graphs G with ∆(G) ≥ 9 [10]. Dong et al. confirmed Conjecture 2 for planar graphs
without 6-cycles with chord [4].

In this paper, we shall show the following result.
Theorem Let G be a planar graph without non-induced 7-cycles, if ∆(G) ≥ 7, then χ′l(G) ≤ ∆(G) + 1
and χ′′l (G) ≤ ∆(G) + 2.

2 Planar graphs without non-induced 7-cycles
First let us introduce some important lemmas.

Lemma 3 LetG be a planar graph without non-induced 7-cycles. Then there is an edge uv ∈ E(G) such
that min{d(u), d(v)} ≤ b∆(G)+1

2 c and d(u) + d(v) ≤ max{9,∆(G) + 2}.

Proof: Suppose to the contrary that G is a minimal counterexample to Lemma 3 in terms of the number
of vertices and edges. Then we have δ(G) ≥ 3.
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By Euler’s formula |V | − |E|+ |F | = 2 and
∑

v∈V (G) d(v) =
∑

f∈F (G) d(f) = 2|E|, we have∑
v∈V (G)

(2d(v)− 6) +
∑

f∈F (G)

(d(f)− 6) = −6(|V | − |E|+ |F |) = −12.

Define an initial charge function w on V (G) ∪ F (G) by setting w(v) = 2d(v) − 6 if v ∈ V (G) and
w(f) = d(f) − 6 if f ∈ F (G), so that

∑
x∈V (G)∪F (G) w(x) = −12. Now redistribute the charge

according to the following discharging rules.
For convenience, let w̄(v) denote the total charge transferred from a vertex v to all its incident 4- and

5-faces where d(v) = 5.

D1 Let f be a 3-face incident with a vertex v. Then v gives f charge 4−w̄(v)
f3(v) if d(v) = 5, 3

2 if d(v) ≥ 6.

D2 Let f be a 4-face incident with a vertex v. Then v gives f charge 1
2 if d(v) = 4, 5 and 6, 1 if

d(v) ≥ 7.

D3 Let f be a 5-face incident with a vertex v. Then v gives f charge 1
5 if d(v) = 4, 5 and 6, 1

3 if
d(v) ≥ 7.

Let the new charge of each element x be w′(x) for each x ∈ V (G) ∪ F (G).

In the following, let us check the new charge w′(x) of each element x ∈ V (G) ∪ F (G).
Suppose d(v) = 3. Then w′(v) = w(v) = 0.
Suppose d(v) = 4. Then w(v) = 2, f4(v) ≤ 4. If 2 ≤ f4(v) ≤ 4, then f5(v) = 0 for G contains no

non-induced 7-cycles. We have w′(v) ≥ 2− 1
2×4 = 0 byD2. Otherwise, i.e. f4(v) ≤ 1, then f5(v) ≤ 4.

Thus we have w′(v) > 2− 1
2 −

1
5 × 4 = 7

10 > 0 by D2 and D3.
Suppose d(v) = 5. Thenw(v) = 4, f3(v) ≤ 5. If 1 ≤ f3(v), thenw′(v) ≥ 4− 4−w̄(v)

f3(v) f3(v)−w̄(v) = 0

by D1. Otherwise, i.e. f3(v) = 0, then f4(v) + f5(v) ≤ 5. It is clear that w′(v) > 4 − 1
2 × 5 = 3

2 > 0
by D2 and D3.

Suppose d(v) = 6. Then w(v) = 6, f3(v) ≤ 4 for G contains no non-induced 7-cycles. If f3(v) = 4,
then f4(v) = 0 and f5(v) = 0 for G contains no non-induced 7-cycles. We have w′(v) ≥ 6− 3

2 × 4 = 0
by D1. If f3(v) ≤ 3, then it is clear that w′(v) > 6− 3

2 × 3− 1
2 × 3 = 0 by D1, D2 and D3.

Suppose d(v) = 7. Then w(v) = 8, f3(v) ≤ 5 for G contains no non-induced 7-cycles.
Suppose f3(v) = 5. Then f4(v) = 0 and f5(v) = 0 for G contains no non-induced 7-cycles. We can

get w′(v) ≥ 8− 3
2 × 5 = 1

2 > 0 by D1.
Suppose f3(v) = 4. Then f4(v) ≤ 2. If f4(v) = 2, then f5(v) = 0 for G contains no non-induced

7-cycles. We have w′(v) ≥ 8 − 3
2 × 4 − 1 × 2 = 0 by D1 and D2. If f4(v) ≤ 1, then f5(v) ≤ 1 for G

contains no non-induced 7-cycles. We have w′(v) ≥ 8− 3
2 × 4− 1− 1

3 = 2
3 > 0 by D1, D2 and D3.

Suppose f3(v) = 3. Then f4(v) ≤ 2 and f5(v) ≤ 2 for G contains no non-induced 7-cycles. It is clear
that w′(v) > 8− 3

2 × 3− 1× 2− 1
3 × 2 = 5

6 > 0 by D1, D2 and D3.
Suppose f3(v) ≤ 2. Then it is clear that w′(v) > 8− 3

2 × 2− 1× 5 = 0 by D1, D2 and D3.
Suppose d(v) = 8. Then w(v) = 10, f3(v) ≤ 6 for G contains no non-induced 7-cycles. If f3(v) = 6,

then f4(v) = 0 and f5(v) = 0 for G contains no non-induced 7-cycles. We have w′(v) ≥ 10− 3
2 × 6 =

1 > 0 by D1. If f3(v) = 5, then f4(v) ≤ 1 and f5(v) ≤ 1 for G contains no non-induced 7-cycles. We
can get w′(v) ≥ 10 − 3

2 × 5 − 1 − 1
3 = 7

6 > 0 by D1, D2 and D3. If f3(v) ≤ 4, then it is clear that
w′(v) ≥ 10− 3

2 × 4− 1× 4 = 0 by D1, D2 and D3.
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Suppose d(v) = 9. Then w(v) = 12, f3(v) ≤ 7 for G contains no non-induced 7-cycles. If f3(v) = 7,
then f4(v) = 0 and f5(v) = 0 forG contains no non-induced 7-cycles. We can get w′(v) ≥ 12− 3

2 ×7 =
3
2 > 0 by D1. If f3(v) ≤ 6, then it is clear that w′(v) > 12− 3

2 × 6− 1× 3 = 0 by D1, D2 and D3.
Suppose d(v) ≥ 10. Then w(v) = 2d(v)− 6, f4(v) + f5(v) ≤ d(v)− f3(v). Thus we have w′(v) ≥

2d(v)− 6− 3
2f3(v)− f4(v)− 1

3f5(v) ≥ d(v)− 6− 1
2f3(v) by D1, D2 and D3. Since f3(v) ≤ 4

5d(v),
we have w′(v) ≥ 3

5d(v)− 6 ≥ 0.
Suppose d(f) = 3. Then w(f) = −3.
Suppose δ(f) = 3. Then f is a (3, 7+, 7+)-face by assumption. We have w′(f) = −3 + 3

2 × 2 = 0 by
D1.

Suppose δ(f) = 4. Then f is a (4, 6+, 6+)-face by assumption. We have w′(f) = −3 + 3
2 × 2 = 0 by

D1.
Suppose δ(f) = 5. Then f is a (5, 5+, 5+)-face.
Suppose f is a (5, 5, 5)-face. For convenience, let f = uvw. Of the three vertices u, v and w, there is at

most one vertex which is incident with at least four 3-faces for the reason that G contains no non-induced
7-cycles. Without loss of generality, let f3(u) ≥ 4. Then f3(u) + f4(u) + f5(u) ≤ 5, f3(v) + f4(v) +

f5(v) ≤ 3 and f3(w)+f4(w)+f5(w) ≤ 3 forG contains no non-induced 7-cycles. We have 4−w̄(v)
f3(u) ≥

4
5 ,

4−w̄(v)
f3(v) ≥

4
3 , 4−w̄(v)

f3(w) ≥
4
3 by D2 and D3. Thus w′(f) ≥ −3 + 4

5 + 4
3 × 2 = 7

15 > 0 by D1. Now we

assume that f3(u) ≤ 3, f3(v) ≤ 3, f3(w) ≤ 3. Then we have 4−w̄(v)
f3(v) ≥ 1 for G contains no non-induced

7-cycles and by D1, D2 and D3. Thus w′(f) ≥ −3 + 1× 3 = 0 by D1.
Suppose f is a (5, 5, 6+)-face. For convenience, let f = uvw where d(u) = d(v) = 5. Since

f3(u) + f4(u) + f5(u) ≤ 5, f3(v) + f4(v) + f5(v) ≤ 5, we have 4−w̄(v)
f3(u) ≥

4
5 , 4−w̄(v)

f3(v) ≥
4
5 by D2 and

D3. Thus w′(f) ≥ −3 + 4
5 × 2 + 3

2 = 1
10 > 0 by D1.

Suppose f is a (5, 6+, 6+)-face. Then we have w′(f) > −3 + 3
2 × 2 = 0 by D1.

Suppose δ(f) ≥ 6. Then we have w′(f) = −3 + 3
2 × 3 = 3

2 > 0 by D1.
Suppose d(f) = 4. Then w(f) = −2. If δ(f) = 3, then f is a (3, 3+, 7+, 7+)-face by assumption.

We have w′(f) ≥ −2 + 1 × 2 = 0 by D2. If δ(f) ≥ 4, then f is a (4+, 4+, 4+, 4+)-face. We have
w′(f) ≥ −2 + 1

2 × 4 = 0 by D2.
Suppose d(f) = 5. Then w(f) = −1.
Suppose δ(f) = 3. Then n3(f) ≤ 2 by assumption. If n3(f) = 2, then f is a (3, 3, 7+, 7+, 7+)-face by

assumption. We have w′(f) ≥ −1 + 1
3 × 3 = 0 by D3. If n3(f) = 1, then f is a (3, 4+, 4+, 7+, 7+)-face

by assumption. We have w′(f) ≥ −1 + 1
3 × 2 + 1

5 × 2 = 1
15 > 0 by D3.

Suppose δ(f) ≥ 4. Then we have w′(f) ≥ −1 + 1
5 × 5 = 0 by D3.

Suppose d(f) ≥ 6. Then w′(f) = w(f) ≥ 0.
From the above discussion, we obtain −12 =

∑
x∈V (G)∪F (G) w

′(x) ≥ 0, a contradiction. 2

Lemma 4 Let G be a planar graph without non-induced 7-cycles. Then χ′l(G) ≤ k + 1 and χ′′l (G) ≤
k + 2 where k = max{∆(G), 7}.

Proof: Suppose to the contrary that G′ and G′′ are minimal counterexamples to the conclusions for χ′l
and χ′′l respectively. Let L′ and L′′ be list assignments such that |L′(e)| = k + 1 for each e ∈ E(G), G′

is not edge-L′-colorable, and |L′′(x)| = k + 2 for each x ∈ V (G) ∪E(G), G′′ is not total-L′′-colorable.
By Lemma 3, G′ and G′′ contain an edge uv ∈ E(G) such that min{d(u), d(v)} ≤ b∆(G)+1

2 c and
d(u) + d(v) ≤ max{9,∆(G) + 2} = k + 2.
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Let Ḡ′ = G′− uv. Then Ḡ′ is edge-L′-colorable by assumption. For d(u) + d(v) ≤ k+ 2, there are at
most k edges which are adjacent to uv in Ḡ′. Thus there is at lest one color in L′(uv) which we can use
to color uv. Then G′ is edge-L′-colorable, a contradiction.

Let Ḡ′′ = G′′ − uv. Then Ḡ′′ is total-L′′-colorable by assumption. With loss of generality, let d(u) =
min{d(u), d(v)}. Erase the color on u, then there is at least one color in L′′(uv) which we can use to
color uv for d(u) + d(v) ≤ k + 2. For d(u) ≤ b∆(G)+1

2 c ≤ bk+1
2 c, then u is adjacent to at most bk+1

2 c
vertices and is incident with at most bk+1

2 c edges. Thus there is at least one color in L′′(u) which we
can use to color u. Then G′′ is total-L′′-colorable, a contradiction. From the above discussion, we have
χ′l(G) ≤ k + 1 and χ′′l (G) ≤ k + 2 where k = max{∆(G), 7}. 2

By Lemma 4, it is easy to obtain the main theorem.
Theorem Let G be a planar graph without non-induced 7-cycles, if ∆(G) ≥ 7, then χ′l(G) ≤ ∆(G) + 1
and χ′′l (G) ≤ ∆(G) + 2.
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