Skip to Main content Skip to Navigation
New interface
Journal articles

Human brain distinctiveness based on EEG spectral coherence connectivity.

Abstract : The use of EEG biometrics, for the purpose of automatic people recognition, has received increasing attention in the recent years. Most of current analysis rely on the extraction of features characterizing the activity of single brain regions, like power-spectrum estimates, thus neglecting possible temporal dependencies between the generated EEG signals. However, important physiological information can be extracted from the way different brain regions are functionally coupled. In this study, we propose a novel approach that fuses spectral coherence based connectivity between different brain regions as a possibly viable biometric feature. The proposed approach is tested on a large dataset of subjects (N=108) during eyes-closed (EC) and eyes-open (EO) resting state conditions. The obtained recognition performances show that using brain connectivity leads to higher distinctiveness with respect to power-spectrum measurements, in both the experimental conditions. Notably, a 100% recognition accuracy is obtained in EC and EO when integrating functional connectivity between regions in the frontal lobe, while a lower 97.5% is obtained in EC (96.26% in EO) when fusing power spectrum information from parieto-occipital (centro-parietal in EO) regions. Taken together, these results suggest that functional connectivity patterns represent effective features for improving EEG-based biometric systems.
Complete list of metadata
Contributor : Fabrizio De Vico Fallani Connect in order to contact the contributor
Submitted on : Monday, May 19, 2014 - 2:56:34 PM
Last modification on : Friday, November 25, 2022 - 7:04:09 PM

Links full text



Daria La Rocca, Patrizio Campisi, Balazs Vegso, Peter Cserti, Gyorgy Kozmann, et al.. Human brain distinctiveness based on EEG spectral coherence connectivity.. IEEE Transactions on Biomedical Engineering, 2014, to be published. ⟨10.1109/TBME.2014.2317881⟩. ⟨hal-00992996⟩



Record views