Structure of spanning trees on the two-dimensional Sierpinski gasket

Abstract : Consider spanning trees on the two-dimensional Sierpinski gasket SG(n) where stage n is a non-negative integer. For any given vertex x of SG(n), we derive rigorously the probability distribution of the degree j ∈{1,2,3,4} at the vertex and its value in the infinite n limit. Adding up such probabilities of all the vertices divided by the number of vertices, we obtain the average probability distribution of the degree j. The corresponding limiting distribution φj gives the average probability that a vertex is connected by 1, 2, 3 or 4 bond(s) among all the spanning tree configurations. They are rational numbers given as φ1=10957/40464, φ2=6626035/13636368, φ3=2943139/13636368, φ4=124895/4545456.
Type de document :
Article dans une revue
Discrete Mathematics and Theoretical Computer Science, DMTCS, 2011, special issue in honor of Laci Babai's 60th birthday: Combinatorics, Groups, Algorithms, and Complexity, 12 (3), pp.151-176
Liste complète des métadonnées

Littérature citée [32 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00993549
Contributeur : Service Ist Inria Sophia Antipolis-Méditerranée / I3s <>
Soumis le : mardi 20 mai 2014 - 14:37:11
Dernière modification le : jeudi 19 avril 2018 - 09:50:04
Document(s) archivé(s) le : mercredi 20 août 2014 - 11:41:51

Fichier

1286-5658-1-PB.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-00993549, version 1

Collections

Citation

Shu-Chiuan Chang, Lung-Chi Chen. Structure of spanning trees on the two-dimensional Sierpinski gasket. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2011, special issue in honor of Laci Babai's 60th birthday: Combinatorics, Groups, Algorithms, and Complexity, 12 (3), pp.151-176. 〈hal-00993549〉

Partager

Métriques

Consultations de la notice

199

Téléchargements de fichiers

220