Computing necessary integrability conditions for planar parametrized homogeneous potentials

Abstract : Let $V\in\mathbb{Q}(i)(\a_1,\dots,\a_n)(\q_1,\q_2)$ be a rationally parametrized planar homogeneous potential of homogeneity degree $k\neq -2, 0, 2$. We design an algorithm that computes polynomial \emph{necessary} conditions on the parameters $(\a_1,\dots,\a_n)$ such that the dynamical system associated to the potential $V$ is integrable. These conditions originate from those of the Morales-Ramis-Simó integrability criterion near all Darboux points. The implementation of the algorithm allows to treat applications that were out of reach before, for instance concerning the non-integrability of polynomial potentials up to degree $9$. Another striking application is the first complete proof of the non-integrability of the \emph{collinear three body problem}.
Type de document :
Communication dans un congrès
ISSAC'14 - International Symposium on Symbolic and Algebraic Computation, Jul 2014, Kobe, Japan. ACM Press, pp.67-74, 2014, <10.1145/2608628.2608662>
Liste complète des métadonnées


https://hal.inria.fr/hal-00994116
Contributeur : Alin Bostan <>
Soumis le : mercredi 21 mai 2014 - 01:56:45
Dernière modification le : jeudi 9 février 2017 - 15:48:20
Document(s) archivé(s) le : jeudi 21 août 2014 - 10:57:05

Fichiers

BoCoSa14-hal.pdf
Accord explicite pour ce dépôt

Identifiants

Collections

Citation

Alin Bostan, Thierry Combot, Mohab Safey El Din. Computing necessary integrability conditions for planar parametrized homogeneous potentials. ISSAC'14 - International Symposium on Symbolic and Algebraic Computation, Jul 2014, Kobe, Japan. ACM Press, pp.67-74, 2014, <10.1145/2608628.2608662>. <hal-00994116>

Partager

Métriques

Consultations de
la notice

290

Téléchargements du document

117