Toric Border Basis

Bernard Mourrain 1 Philippe Trebuchet 2
1 GALAAD2 - Géométrie , Algèbre, Algorithmes
CRISAM - Inria Sophia Antipolis - Méditerranée
2 APR - Algorithmes, Programmes et Résolution
LIP6 - Laboratoire d'Informatique de Paris 6
Abstract : We extend the theory and the algorithms of Border Bases to systems of Laurent polynomial equations, defining ''toric'' roots. Instead of introducing new variables and new relations to saturate by the variable inverses, we propose a more efficient approach which works directly with the variables and their inverse. We show that the commutation relations and the inversion relations characterize toric border bases. We explicitly describe the first syzygy module associated to a toric border basis in terms of these relations. Finally, a new border basis algorithm for Laurent polynomials is described and a proof of its termination is given for zero-dimensional toric ideals.
Type de document :
Communication dans un congrès
ISSAC'14 - International Symposium on Symbolic and Algebraic Computation, Jul 2014, Kobe, Japan. ACM New York, NY, USA, Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation (ISSAC), pp.343-350, 2014, <10.1145/2608628.2608652>
Liste complète des métadonnées


https://hal.inria.fr/hal-00994683
Contributeur : Bernard Mourrain <>
Soumis le : mardi 3 juin 2014 - 23:32:47
Dernière modification le : jeudi 11 août 2016 - 15:17:43
Document(s) archivé(s) le : mercredi 3 septembre 2014 - 10:50:48

Fichiers

paper.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Bernard Mourrain, Philippe Trebuchet. Toric Border Basis. ISSAC'14 - International Symposium on Symbolic and Algebraic Computation, Jul 2014, Kobe, Japan. ACM New York, NY, USA, Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation (ISSAC), pp.343-350, 2014, <10.1145/2608628.2608652>. <hal-00994683>

Partager

Métriques

Consultations de
la notice

356

Téléchargements du document

140