Skip to Main content Skip to Navigation
New interface
Conference papers

Toric Border Basis

Bernard Mourrain 1 Philippe Trebuchet 2 
1 GALAAD2 - Géométrie , Algèbre, Algorithmes
CRISAM - Inria Sophia Antipolis - Méditerranée
2 APR - Algorithmes, Programmes et Résolution
LIP6 - Laboratoire d'Informatique de Paris 6
Abstract : We extend the theory and the algorithms of Border Bases to systems of Laurent polynomial equations, defining ''toric'' roots. Instead of introducing new variables and new relations to saturate by the variable inverses, we propose a more efficient approach which works directly with the variables and their inverse. We show that the commutation relations and the inversion relations characterize toric border bases. We explicitly describe the first syzygy module associated to a toric border basis in terms of these relations. Finally, a new border basis algorithm for Laurent polynomials is described and a proof of its termination is given for zero-dimensional toric ideals.
Document type :
Conference papers
Complete list of metadata

Cited literature [19 references]  Display  Hide  Download
Contributor : Bernard Mourrain Connect in order to contact the contributor
Submitted on : Tuesday, June 3, 2014 - 11:32:47 PM
Last modification on : Thursday, February 3, 2022 - 3:43:31 AM
Long-term archiving on: : Wednesday, September 3, 2014 - 10:50:48 AM


Files produced by the author(s)



Bernard Mourrain, Philippe Trebuchet. Toric Border Basis. ISSAC'14 - International Symposium on Symbolic and Algebraic Computation, Jul 2014, Kobe, Japan. pp.343-350, ⟨10.1145/2608628.2608652⟩. ⟨hal-00994683⟩



Record views


Files downloads