B. Cockburn, G. Karniadakis, and C. Shu, Discontinuous Galerkin methods: theory, computation and application, Lecture notes in computational science and engineering, 2000.

H. Deconinck and M. Ricchiuto, Residual distribution schemes: Foundations and analysis, in: Encyclopedia of Computational Mechanics, 2004.

T. J. Hughes, Recent progress in the development and understanding of SUPG methods with special reference to the compressible Euler and Navier-Stokes equations, International Journal for Numerical Methods in Fluids, vol.78, issue.11, pp.1261-1275, 1987.
DOI : 10.1002/fld.1650071108

V. Selmin, J. Donea, and L. Quartapelle, Finite element methods for nonlinear advection, Computer Methods in Applied Mechanics and Engineering, vol.52, issue.1-3, pp.817-845, 1985.
DOI : 10.1016/0045-7825(85)90016-7

R. Abgrall, D. De-santis, and M. Ricchiuto, High-Order Preserving Residual Distribution Schemes for Advection-Diffusion Scalar Problems on Arbitrary Grids, SIAM Journal on Scientific Computing, vol.36, issue.3, 2013.
DOI : 10.1137/12090143X

URL : https://hal.archives-ouvertes.fr/hal-00758930

O. C. Zienkiewicz and J. Z. Zhu, A simple error estimator and adaptive procedure for practical engineerng analysis, International Journal for Numerical Methods in Engineering, vol.7, issue.18, pp.337-357, 1987.
DOI : 10.1002/nme.1620240206

O. C. Zienkiewicz and J. Z. Zhu, The superconvergent patch recovery anda posteriori error estimates. Part 2: Error estimates and adaptivity, International Journal for Numerical Methods in Engineering, vol.8, issue.7, pp.1365-1382, 1992.
DOI : 10.1002/nme.1620330703

R. Abgrall and D. D. Santis, Linear and non-linear high order accurate residual distribution schemes for the discretization of the steady compressible Navier???Stokes equations, Journal of Computational Physics, vol.283, 2014.
DOI : 10.1016/j.jcp.2014.11.031

P. R. Spalart and S. R. Allmaras, A one-equation turbulence model for aerodynamic flows, 30th Aerospace Sciences Meeting and Exhibit, pp.2244-2553, 1994.
DOI : 10.2514/6.1992-439

S. R. Allmaras, Multigrid for the 2-D compressible Navier-Stokes equations, 14th Computational Fluid Dynamics Conference, 2011.
DOI : 10.2514/6.1999-3336

T. A. Oliver, High-Order, Adaptive, Discontinuous Galerkin Finite Element Method for the Reynolds-Averaged Navier-Stokes Equations, 2008.

D. Moro, N. C. Nguyen, and J. Peraire, Navier-Stokes Solution Using Hybridizable Discontinuous Galerkin methods, 20th AIAA Computational Fluid Dynamics Conference, pp.2011-3407, 2011.
DOI : 10.2514/6.2011-3407

S. R. Allmaras, F. T. Johnson, and P. R. Spalar, Modifications and Clarifications for the Implementation of the Spalart-Allmaras Turbulence Model, Seventh International Conference on Computational Fluid Dynamics (ICCFD7), pp.7-4202, 2012.

A. Crivellini, V. D-'alessandro, and F. Bassi, A Spalart???Allmaras turbulence model implementation in a discontinuous Galerkin solver for incompressible flows, Journal of Computational Physics, vol.241, pp.388-415, 2013.
DOI : 10.1016/j.jcp.2012.12.038

R. Abgrall and P. L. Roe, High-order fluctuation schemes on triangular meshes, Journal of Scientific Computing, vol.19, issue.1/3, pp.3-36, 2003.
DOI : 10.1023/A:1025335421202

H. Luo, L. Luo, R. Nourgaliev, and V. Mousseau, A reconstructed discontinuous Galerkin method for the compressible Navier???Stokes equations on arbitrary grids, Dinh, A reconstructed discontinuous Galerkin method for the compressible NavierStokes equations on arbitrary grids, pp.6961-6978, 2010.
DOI : 10.1016/j.jcp.2010.05.033

B. Van-leer and S. Nomura, Discontinuous Galerkin for Diffusion, 17th AIAA Computational Fluid Dynamics Conference, 2005.
DOI : 10.2514/6.2005-5108

R. Abgrall, A. Larat, and M. Ricchiuto, Construction of very high order residual distribution schemes for steady inviscid flow problems on hybrid unstructured meshes, Journal of Computational Physics, vol.230, issue.11, pp.4103-4136, 2011.
DOI : 10.1016/j.jcp.2010.07.035

URL : https://hal.archives-ouvertes.fr/hal-00652412

B. Cockburn and C. Shu, The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems, SIAM Journal on Numerical Analysis, vol.35, issue.6, p.2440, 1998.
DOI : 10.1137/S0036142997316712

O. Zienkiewicz and R. L. Taylor, Finite Element Method, 2000.

L. R. Herrmann, Interpretation of finite element procedure as stress error minimization procedure, Journal of the Engineering Mechanics Division, vol.98, pp.1330-1336, 1972.

Y. Sun, Z. Wang, and Y. Lun, Efficient implicit non-linear lu-sgs approach for compressible flow computation using high-order spectral difference method, Communications in computational physics, vol.5, pp.760-778, 2009.

M. Parsani, G. Ghorbaniasl, C. Lacor, and E. , An implicit high-order spectral difference approach for large eddy simulation, Journal of Computational Physics, vol.229, issue.14, pp.5373-5393, 2010.
DOI : 10.1016/j.jcp.2010.03.038

T. Haga, K. Sawada, and Z. J. Wang, An Implicit LU-SGS Scheme for the Spectral Volume Method on Unstructured Tetrahedral Grids, Communications in Computational Physics, vol.6, issue.5, pp.978-996, 2009.
DOI : 10.4208/cicp.2009.v6.p978

M. Tidiriri, Preconditioning Techniques for the Newton???Krylov Solution of Compressible Flows, Journal of Computational Physics, vol.132, issue.1, pp.51-61, 1997.
DOI : 10.1006/jcph.1996.5605

R. Abgrall, D. De-santis, and M. Ricchiuto, High order residual distribution scheme for rans equations, Seventh International Conference on Computational Fluid Dynamics, pp.7-2802, 2012.

K. Wieghardt and W. Tillman, On the turbulent friction layer for rising pressure, 1951.

P. J. Roache, Verification and Validation in Computational Science and Engineering, 1998.

S. B. Pope, Turbulent Flows, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00338511

A. G. Research, D. N. , and .. F. Ce, A Selection of Experimental Test Cases for the Validation of CFD Codes, 1994.

N. K. Burgess and D. J. Mavriplis, High-order Discontinuous Galerkin Methods for Turbulent High-lift Flows, Seventh International Conference on Computational Fluid Dynamics (ICCFD7), pp.7-4202, 2012.

C. L. Rumsey, T. B. Gatski1, S. X. Ying, and A. Bertelrud, Prediction of High-Lift Flows Using Turbulent Closure Models, AIAA Journal, vol.36, issue.5, pp.765-774, 1998.
DOI : 10.2514/2.435

J. L. Chu, Experimental surface pressure data obtained on 65 ? delta wing across Reynolds number and Mach number ranges

A. Schutte and H. Ludeke, Numerical investigations on the VFE-2 65-degree rounded leading edge delta wing using the unstructured DLR TAU-Code, Aerospace Science and Technology, vol.24, issue.1, pp.56-65, 2013.
DOI : 10.1016/j.ast.2012.03.002