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Abstract

Background: The use of classification algorithms is becoming increasingly important for the field of computational

biology. However, not only the quality of the classification, but also its biological interpretation is important. This

interpretation may be eased if interacting elements can be identified and visualized, something that requires

appropriate tools and methods.

Results: We developed a new approach to detecting interactions in complex systems based on classification. Using

rule-based classifiers, we previously proposed a rule network visualization strategy that may be applied as a heuristic

for finding interactions. We now complement this work with Ciruvis, a web-based tool for the construction of rule

networks from classifiers made of IF-THEN rules. Simulated and biological data served as an illustration of how the

tool may be used to visualize and interpret classifiers. Furthermore, we used the rule networks to identify feature

interactions, compared them to alternative methods, and computationally validated the findings.

Conclusions: Rule networks enable a fast method for model visualization and provide an exploratory heuristic to

interaction detection. The tool is made freely available on the web and may thus be used to aid and improve

rule-based classification.
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Background

Technological developments have increased the ability to

generate and store large amounts of data. However, for

the data to be useful relevant methods for their analysis

are needed. Classification methods are algorithms that

automatically learn from such large data sets; however, the

requirements on such methods are quite high and the

need for new classification methods have been stressed,

especially the need for methods that are able to identify

interactions in the data [1-3]. For instance, single nucleo-

tide polymorphisms (SNPs) found in genome-wide associ-

ation studies using traditional statistical analysis can only

explain small fractions of many common diseases [4] and

classifiers using those markers may be of poor quality [5].

It has been suggested that this is due to the lack of gene-

gene and gene-environment interactions in the models [1]

and efforts have been made to develop specific tools, e.g.

for the identification of SNP interactions [6].

Rule-based classifiers are one type of classifiers. Their

strength lies in the fact that they are comparably easy to

interpret while still producing models of reasonable

quality, which have made them suitable for applications

in systems biology. Rule-based classifiers have earlier

been applied to a wide spectrum of problems in genom-

ics, proteomics, epigenetics, e.g., predict gene ontology

terms from gene expression time profiles [7], to interpret

microarray data [8], to model cleavage of polypeptide

octamers by the HIV-1 protease [9], to model ligand-

receptor interactions [10], and to classify Alzheimer’s pa-

tients [11].

A rule-based classifier consist of a set of IF-THEN rules

that describes the relations in the training data almost in

natural language based on the original feature names.

There are different software packages that can generate

rules including ROSETTA [12], and WEKA [13]. Rule-

based classifiers are non-linear and the identified rules

may describe important features and interactions in the

data. An intuitive heuristic to identify putative interactions
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from a set of rules is to search the rules for combinations

of conditions that occur frequently in them. However, a

classifier typically contains a large number of rules, which

sometimes may be very complex with five to ten, or even

more, conditions. Thus, new tools are needed to support

the visualization and interpretation of the rules.

Most attempts to visualize rules have concerned asso-

ciation rules. For an overview of such visualization tech-

niques, see for example [14,15]. Software previously

developed for this task includes the R package arulesViz

[16] that uses a two-dimensional matrix in which similar

rules are clustered. However, most methods scale poorly

with an increased number of rules. We were impressed

by the readability of the circular graphs produced by the

Circos software [17] and decided to use it for rule

visualization. To our knowledge, the only attempt to

visualize rules in a circular layout was done for associ-

ation rules by [18].

We therefore present Ciruvis: a web-based tool [19]

for the visualization of conditions that are associated in

the rules using a circular layout. It relies on a scoring

system previously introduced by [20] for which we now

provided a free-to-use web-based implementation. The

tool may produce both separate rule networks for each

decision outcome and a combined network. In this study

we focused on the detection of interaction effects in

those networks, although they may also be valuable

solely for visualization purposes.

Using different types of simulated data sets, we showed

that applying our tool to ROSETTA rules may identify in-

teractions in the data. Furthermore, we applied the tool to

real data in order to compare it to other methods and to

illustrate its use. The tool is fast, scales well with the num-

ber of rules and is easy to use.

In conclusion, we believe that Ciruvis may facilitate

visualization of rule-based classifiers and the discovery

of interactions.

Methods

Rule terminology

A rule describes a relation between the rule conditions

(the left-hand-side, LHS, of the rule) and the rule out-

come (the right-hand-side, RHS). For example, a rule

taken from a classifier for leukemia based on gene ex-

pression is: IF MIF=‘high’ AND GPX1=‘low’ THEN

type=‘chronic lymphocytic leukemia’.

The rule support is the number of objects that fulfill

the LHS of the rule, and the accuracy is the fraction of

those objects that also fulfill the RHS of the rule, or

equivalently, accuracy = P (RHS|LHS). A rule condition

has the form feature=‘value’ (for example MIF=‘high’)

and a rule may have one or multiple conditions. The

rule outcome has the form of class=‘value’ and there is

only one such feature.

Definition of the rule network

Ciruvis is a tool to visualize combinations of rule condi-

tions that are important for a particular rule outcome.

Each condition that has at least one connection to an-

other condition is placed as a node on the outer ring of

the circle in an alphabetical order. Two conditions are

connected inside the circle if they co-occur in some rule

(s). The score of the connection between two conditions,

x and y, is defined as

connection x; yð Þ ¼
X

r∈R x;yð Þ

support rð Þ⋅accuracy rð Þ

where R(x,y) is the set of all rules in which x and y co-

occur.

The connections are shown as edges between the

nodes. The width and color of the edges are related to

the connection score (low = yellow and thin, high = red

and thick). The inner ring shows the color of the condi-

tion on the other side of the connection. The width of a

node is the sum of all connection to it, scaled so that all

nodes together cover the whole circle.

Parameters and user interface

To run Ciruvis, a rule file must be submitted either in

the ROSETTA or in a line-by-line format. Several op-

tional filtering and formatting parameters are available

(Additional file 1: Table S1). A screen shot from the

submission form and the results page are shown in

(Additional file 2: Figure S1). One rule network is gener-

ated for each possible outcome. The figures are inter-

active, and by clicking on the edge between two conditions,

all rules containing that combination of conditions are

shown. If the Ctrl key is held while selecting multiple

edges, the intersections of rules from these edges are

shown. The name of a node is shown when the mouse is

hovered over it. It is possible to download the Ciruvis

figure in the Scalable Vector Graphics (SVG) format

and the feature labels as an HTML table which both can

be easily edited and used to produce publication-quality

figures.

Generation of simulated data

We used simulated data to test the ability to detect in-

teractions using the networks. The dataset was con-

structed to contain both noise, features correlated to the

decision, and pairs of interacting features. The interact-

ing features were defined so that they together were pre-

dictive for the decision but that each of them was

uncorrelated to it. Translated into a real-world situation,

this could represent a situation with SNPs of which

some lack marginal effects on the outcome, but have an

interaction effect caused by gene-gene interactions or

epistasis.
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For each data set we defined five correlated features

with expected correlation c = X*i/4, where X was the

maximal correlation for that data set and i = 0, 1, …, 4.

Each correlated variable was named after the index i and

its correlation c according to Ci_c. Similarly, we defined

five pairs of interacting features which, when taken to-

gether, were predictive for the outcome with the prob-

ability p = Y*i/4, where Y was the maximal value for that

data set and i = 0, 1, …, 4. The features of the pairs were

named Ri_ p and Si_ p where i was an index 0 < = i < =

4, and p was their probability of being predictive.

Each choice of the parameters X and Y thereby repre-

sented one data set with 15 features. In order to gener-

ate datasets with different properties, we allowed X and

Y to take all values in {0.00, 0.05, 0.10, …, 0.95, 1.00},

which defined 21*21 = 441 datasets. In each dataset 1000

objects were generated using the algorithm below. Note

that the Random() function returns only discrete values and

thus, that both the decision and the features are discrete.

Here Random() is a function that returns 0 or 1 with

equal probability, and Probability(q) is a function that

returns true with probability q and false otherwise. We gen-

erated 50 replicate data sets for each combination of X and

Y and trained a classification model on each of those. The

classification accuracies presented were the averaged over

those 50 models and all rules from the replicates were

merged together for Ciruvis to construct an average picture.

Rule-based classification using ROSETTA

The rule-based classifiers were constructed using the

ROSETTA toolkit for analysis of tabular data [12,21].

ROSETTA is a mathematical framework capable of de-

riving IF-THEN rules from a set of training examples.

Boolean reasoning is used to compute minimal sets of

features, called reducts, able to discriminate between the

training examples equally well using all features. Based

on the feature values in the training data, the reducts are

transformed into rules that describe minimal sets of fea-

ture conditions associated with a particular decision

class. Combined, these rules may be used to classify pre-

viously unseen objects.

Algorithms and parameters are described shortly in the

results section and in more detail in the Supplementary

methods (Additional file 3: Supplementary methods). The

quality of each classifier was measured by the classifier ac-

curacy (the proportion of correctly classified objects)

which was estimated using 10-fold or leave-one-out cross

validation.

Results and discussion

Detection of correlated versus interacting features in

simulated data

To investigate how well the rule networks from Ciru-

vis could detect feature interactions, we first tested it

using simulated data. The data contained both fea-

tures correlated to the decision and pairs of interact-

ing features predictive for the decision. The level of

correlation and pairwise predictability was determined

by two parameters that defined a maximum level for the

most predictive feature/pair in the dataset. The maximum

level of correlation, X, and of interaction, Y, was varied be-

tween 0 and 1. Then, for each data set the number of cor-

rectly classified objects was counted (Additional file 4:

Figure S2). As expected, there were usually more correctly

classified objects when the features were more predictive

(as measured by higher X and/or Y). Surprisingly, a higher

level of interaction increased or at least retained the classi-

fication quality, whereas a higher correlation sometimes

decreased the quality. Specifically, the quality was de-

creased when the pairwise correlation was high and the

correlation increased over 0.20-0.30. When the interaction

level was 1.00 this was the most evident, since the average

number of correctly classified objects decreased from

998–999 out of 1000 for X < 0.25 to a local minimum 828

at X = 0.45.

This suggests that the rule generation algorithm was

biased towards finding rules containing features corre-

lated to the decision. When the correlated features were

not present, then the combinatorial rules of higher qual-

ity were more likely to be found. The identified masking

became one of the focuses in our study.

Next, we investigated the behavior of the rule net-

works for different datasets (Figure 1). Since both the

features and the decision were binary only the networks

for outcome “0” are presented. Based on the data gener-

ation algorithm opposite values of the R and S variables

were expected to predict the “0” decision, e.g., IF R = 0
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AND S = 1 THEN DEC = 0, whereas equal values predict

the “1” decision. The aim was to observe how small in-

teractions could still be detected and to learn about their

properties; for instance, whether they would be masked

by features strongly correlated to the decision.

Using X = 0.00 and Y = 0.10 we could identify visible

connections between pairs with an interaction level at

10, 8, and 5% (Figure 1A). The connections between

“R4_10” and “S4_10” were the two strongest in the figure

demonstrating that very weak interactions may be

Figure 1 Rule networks for simulated data. Rule networks for twelve different pairs of maximum correlation X and interaction Y for the “0”

outcome. The parameter choices (A-L) correspond to points in Additional file 4: Figure S2. The correlated features are named C0 to C4 (lowest to

highest correlation), and the pairs R0, S0 to R4, S4 (lowest to highest correlation). The colors were specified so that the interacting pairs have the

same color. Each feature occurs twice in the figure; the first time with the value 0 and the second with 1.
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detected in the Ciruvis networks even in the presence of

very noisy data. This particular example also illustrated

that the rules from a classifier may be informative, even

when the quality of classification is essentially not better

than “random guessing”.

In the following runs we processed datasets with a small

background correlation, X = 0.15 (Figure 1B-H). With Y =

0.10 the pair with a 10% chance of interaction was barely

visible, and not among the highest scored connections in

the figure (Figure 1B). As Y was increased the two (or

three) highest scored pairs became step-by-step more vis-

ible (Figure 1C-E) and when Y was set to 0.55 or higher

the three most interacting pairs were by far the strongest

connections (Figure 1F-G), with the exception of Y = 1.00

when the third pair (R2 + S2) was masked by the more

predictive pairs (Figure 1H).

Similarly, when the best interaction was 100% predictive

(Y = 1.00) and with higher correlation (X = 0.35 or X =

0.45, respectively), the strongest interacting pair was

highly visible and the second pair had indeed a visible

connection, but it was on the same level as some of the

noise (Figure 1I-J). Although it is useful to know that

stronger rules may mask weaker ones, masking caused by

perfect correlation would normally not be expected in a

real data set.

When the dataset had both a high level of correlation

and interactions, the connections for the two strongest

interacting pairs were visible, but not the strongest con-

nections (Figure 1K-L). However, the true interactions are

shown as connections from conditions with otherwise few

and weak connections, while connections that are artifacts

caused by combinations of correlated features origin from

conditions with a lot of strong connections.

An observation in all of the generated rule networks

was that at most three (out of four non-zero) interacting

pairs appeared in the networks. A likely explanation is

that the stronger interactions mask the weaker ones,

similarly to how strong correlations do.

Removal of correlated features decreased the masking of

weak interactions

In the previous section we showed that when features

correlated to the decision were roughly as strong or

stronger than the interacting pairs, the latter were

masked by the former. Subsequently, rules containing

the interacting pairs were rarely found or barely visible

in the rule networks. To investigate whether the removal

of correlated features from the data would benefit to the

detection of the pairs, we used the data from Figure 1B

(in which the pairs are heavily masked) and removed the

correlated features C4 and C3 (15% and 11% correlation,

respectively). The pair with the highest interaction (R4 +

S4, with interaction frequency 10%) subsequently be-

came relatively stronger (Figure 2A-B). For instance, in

Figure 2A the connection score between “S4 = 1” and

“R4 = 0” is 0.7% of the total score in the figure, which in-

creases to 1.8% in Figure 2B; becoming the strongest con-

nection in the figure. The increase for the combination

“S4 = 0” and “R4 = 1” was smaller but still significant, from

0.6% to 1.1%. In addition in Figure 2B the “R3 = 0” and

“S3 = 1” pair could be identified (increased from 0.4% to

0.7%), although the connection was still weak. When the

last two correlated features (C2 and C1 with 8% and 4%

correlation, respectively) were removed as well, the

strength of the first and the second pair increased sharply

(to 4.3% and 1.4% respectively) (Figure 2C).

Comparison to other methods using real data

In order to compare the interaction detection to other

methods, and to apply the methodology to real data, we

used the California Housing [22] dataset downloaded

from [23]. This dataset was chosen as it had previously

been subject for interactions detection [24].

California Housing describes housing value based on

1990 census data in California. The decision is the median

value of a block group (medianHouseValue) and there are

8 features. We discretized the decision into three groups;

one group of houses valued ≥500 000 which was encoded

as ‘2’, the remaining houses were split at their median into

the intervals 0–173 600 and 173 601–499 999 (encoded as

‘0’ and ‘1’, respectively). We used the features longitude,

latitude, housingMedianAge, total Rooms, population, and

median Income previously selected by [24] to build a rule-

based model using ROSETTA. The numeric features were

discretized using EqualFrequencyBinning with 4 intervals.

The model accuracy was estimated using 10-fold cross

validation.

The medianIncome feature was highly correlated to

the decision (r = 0.61; Additional file 5: Figure S3) and

when the rule-based model was built to include it, it

dominated the strongest connections (Additional file 6:

Figure S4). An alternative model was built excluding

medianIncome which reduced the accuracy of the model

from 72.4% to 66.5% as important information was ex-

cluded, but made the identification of interacting pairs

easier. Inspecting the rule networks (Figure 3), we iden-

tified the ten strongest connections for each outcome

(Additional file 7: Table S2). For instance, for medianHou-

seValue = 0 three of these described combinations of con-

ditions with specific values for latitude and longitude,

three combinations with population and totalRooms, two

with population and longitude, and two with totalRooms

and longitude. For each one of these specific combinations

of features, we computed whether it had a significant

interaction effect (see Additional file 3: Supplementary

methods for details). Additionally, we computed the ex-

pected accuracy (Additional file 7: Table S2) by first esti-

mating the effect of each condition separately and then
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combining these effects under a multiplicative model (see

[25] for a mathematical derivation). The interaction effects

could then be assessed by comparing the observed and

the expected accuracies.

Out of the ten strongest connections for medianHou-

seValue = 0 three were describing significant interac-

tions. For instance, “population = [1167, 1726) AND

totalRooms = [1448, 2127)” had an accuracy of 67.8%

compared to an expected 51.7%. This increase in accur-

acy is due to a specific interaction between the popula-

tion in the area and the total number of rooms.

Supposedly, the number of rooms per capita is what de-

termines the house prices.

In conclusion, an interaction between population and

totalRooms was described by several connections. Add-

itionally, a specific combination of latitude and longitude

described an interaction predictive for low house prices,

and a combination of high houseMedianAge and high

totalRooms described an interaction predictive for very

high house prices. Two of these pairs were reported as

interacting by [24], but the third one is novel. The inter-

action between latitude and longitude was very strong in

the previous study and it indeed appeared in several of

the strongest connections. However, only one specific

combination of conditions showed a significant inter-

action effect. This is most likely due to these two fea-

tures being strongly correlated (r = −0.92; Additional file 5:

Figure S3) and the assumption of independent effects

therefore underestimated their interaction.

Applications to leukemia and lymphoma

Finally, we applied Ciruvis to biological data describing

leukemia [26] and lymphoma [27]. The leukemia set con-

tained gene expression for 7129 genes from 38 patients di-

vided into two different outcomes: acute lymphoblastic

leukemia (ALL; n = 27) and acute myeloid leukemia

(AML; n = 11). The lymphoma set contained 4026 genes

from 62 patients divided into three outcomes: lymphoma

and leukemia (DLCL or D; n = 42), follicular lymphoma

(FL or F; n = 9) and chronic lymphocytic leukemia (CLL

Figure 2 Correlated features mask weak interactions. Rule networks for the outcome “0” in the simulated data. The data parameters are

X = 0.10, Y = 0.15. (A) Using all features, (B) after the removal of the two strongest correlated features C4_15 and C3_11 and, (C) after the removal

of the four strongest correlated features C1_4-C4_15. Connections between interacting features were colored black.

Figure 3 Rule networks for regression data. Rule networks for the California housing data after removal of the medianIncome feature. The

features are indicated by node color, and the condition values are shown in increasing order (low, middle-low, middle-high, high) on the circle.
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or C; n = 11). The probe names were changed into gene

names when possible and otherwise kept as in the source

data. A single quote was used to discern between multiple

probes matching the same genes. Since most genes had

their expression discretized into two intervals by RO-

SETTA (see Additional file 1: Supplementary methods for

details on the discretization) the intervals were renamed

into “low” and “high”, with the addition of “medium” if ap-

plicable. See (Additional file 8: Table S3 and Additional file 9:

Table S4) for details on gene names and values.

Firstly, we used Monte Carlo feature selection [28] to

rank the genes by significance. After correcting for mul-

tiple testing, there were 701 significant (p < 0.05) genes

for leukemia and 512 for lymphoma. Details about the

feature selection are described in the Supplementary

methods (Additional file 3: Supplementary methods). A

principal component analysis (PCA) verified that using

the 30 most significant features the outcomes were sep-

arable by the first two principal components (Figure 4).

Missing values were replaced by the gene average during

the PCA. Performing a disease association analysis using

WebGestalt [29] we could confirm that the top ten dis-

ease associations of the selected genes contained annota-

tions related to lymphoma and leukemia. For example

the leukemia data were enriched for genes related to

Lymphoid Leukemia (LYN, CCND3, TCF3, CD33, and

MYB; adjP = 0.024) and the lymphoma for Acute Mye-

loid Leukemia (CALR, SUMO, and MYB; adjP = 0.18)

and Acute Erythroblastic Leukemia (PCBP2 and MYB;

adjP = 0.18). The p-values were calculated by WebGes-

talt using the hypergeometric distribution and adjusted

with Bonferroni correction.

Next, we used ROSETTA to train a rule-based classifier

based on the selected features. The accuracy of the classifier

was 100% for both data sets, estimated by leave-one-out

cross validation. Details on the classification are de-

scribed in the Supplementary methods (Additional file 3:

Supplementary methods).

Since each rule set in the leave-one-out cross valid-

ation was trained from all objects except one, they are

expected to be very similar to rules trained on the whole

data. Therefore, instead of repeatedly training a classifier

on the whole data, we merged all the rules from the

cross validation iterations. Duplicates were removed and

the rules were filtered so that rules that are supersets of

other rules were removed if they had lower significance

(hypergeometric distribution); for details on the p-value

calculations, see [30]. The motivation behind the filter-

ing strategy is that shorter rules are preferred if they are

at least equally significant as their longer counterparts.

Figure 4 Feature selection for leukemia and lymphoma. The separation of the outcomes (disease types) using the first two principal

components was improved when the 30 most significant features were used instead of all features. The figures show (A) lymphoma before,

(B) lymphoma after, (C) leukemia before, and (D) leukemia after feature selection, respectively.
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The filtered set of rules was submitted to Ciruvis using

default parameters. The interactive rule networks are

available online at [31].

The rule network for leukemia is shown in Figure 5.

The difference in the overall topology of the networks for

ALL and AML may partly be explained by a different

number of rules for each outcome (48 for ALL and 254

for AML). Direct comparison between the networks was

therefore difficult, since the same width would relate to a

different number of rules. Instead we studied the strongest

connections in each network. For this dataset both net-

works were quite simple, with all connections supported

by only one high-quality rule. For ALL the highest scoring

connections were based on any pair of the following con-

ditions: SPTAN1 = high, PTX3 = low, and CFP = low; the

conditions SPTAN1 = high and CFP = low were the most

frequent in other rules as well. Had the set of patients

been larger, noiseless relationships would likely have been

harder to identify and Ciruvis might have helped us iden-

tify the most important pairs out of more complicated

rules. The AML network showed the same property, with

a large number of connections based on only one rule

with a pair of conditions. Most likely, the reason why

more combinations were found in this network was that

no single condition constituted a high quality rule in itself

which forced the generation of longer rules.

Similar behavior was observed in some of the rule net-

works for the lymphoma data (Figure 6). For CLL many

connections were based on only one rule. The strongest

connection (between MIF = low and GPX1 = high) was

based on four rules. This combination corresponded to a

rule with 73% accuracy, compared to an expected accur-

acy of 51% assuming independent and multiplicative ef-

fects, which indicated that an interaction could be

present. The second strongest connection was between

NT5C2 = low and GPX1 = high which showed an accur-

acy of 84% compared to the expected 55%. A three-way

interaction could be hypothesized and tested between

NT5C2 = low, MIF = low and GPX1 = high with accuracy

of 92% compared to the expected 83%.

Figure 5 Rule networks for leukemia. Rule networks showing which rule conditions that are associated for leukemia. All connections are based

on one rule each and are therefore of roughly equal score. The labels on each side of the figure are written the same order as the conditions

appear in the figure.
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Figure 6 Rule networks for lymphoma. Rule networks showing which rule conditions that are associated for lymphoma. The labels on each

side of the figure are written the same order as the conditions appear in the figure.
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The connections for the next outcome, DLCL, were

supported only by one rule of high quality. Apparently,

adding more conditions did not yield a significant increase

in the rule quality. Notably, there are groups of conditions

in the network that are interchangeable in certain rules.

For instance, CXCL9 = high may be combined with either

of PRKCB = low, PRKCB’ = low, MXI1 = low, HDGF =

high, TUBB = high and GENE669X = high to produce a

rule for DLCL supported by all of the 42 patients in that

group and with 100% accuracy. If instead GPX1 = high is

combined with any of the six genes the second highest

scoring connections are achieved with rules that are al-

most as good; supported by 41 patients and with 100%

accuracy.

For the FL outcome, a hypothesized three-way interaction

between GENE1625X = low, MIF = low and NT5C2 = low

had to be rejected as the combined accuracy was lower

than the predicted. Pairs of these conditions were separat-

ing FL +CLL from DLCL and together with any of several

other conditions they defined three-way interactions.

Conclusions
The requirements on classification methods to be user

friendly and easy to interpret have increased over the

past years. In that respect, rule-based classifiers which

consist of IF-THEN “sentences” (or rules) make the

models comparably easy to interpret. However, when the

model has too many rules to be conveniently read,

methods for visualization of the rules become important.

We developed a web-based tool for rule visualization

that is compatible with any type of classification rules.

Its primary use is to provide a fast and easy visualization

of a rule-based classifier. However, interpreting the rule

networks can also help to generate hypotheses about fea-

ture interactions; which was the main focus of this study.

A limitation of rule-based models is that the attributes

have to be discrete, but discretization techniques help

overcome this.

Using simulated data, we showed that the ROSETTA

software may be used to construct rules that describe in-

teractions even if the features lack marginal effects. Yet

the rule detection may be biased towards features

strongly correlated to the decision. We modeled different

trade-offs between correlated and interacting features, and

demonstrated to what degree stronger associations mask

weaker ones.

The masking is a consequence of the classification algo-

rithm, which is biased towards using the most predictive

features for classification, omitting weaker but still pre-

dictive features or feature combinations. The problem

arises when the interpretation of the classifier is import-

ant. To detect masking features, correlations between

each feature and the decision may be computed or Ciruvis

may be used to identify nodes with connections to almost

all other nodes. We introduced a strategy in which the

features most strongly correlated to the decision are re-

moved from the data and the model is re-generated, in

order for weaker interactions to gain importance for the

classifier and the Ciruvis network.

An important difference as compared to other methods

for interaction detection is that the rule networks are

based on feature-value pairs (conditions) that tell us more

precisely what feature values are involved in the interac-

tions. Although not all the connections that were found in

the networks were true interactions, the rule network is a

fast method to generate a set of hypotheses to be further

validated using other methods and new data.

In a comparison using data that have previously been

used for interaction detection, we could identify both

the reported interactions and a possibly novel one. Sur-

prisingly, the strongest interaction previously reported

(longitude and latitude) was found several times in the

network, but appeared as significant only once. This

interaction was based on two strongly correlated features

that contradicted the assumption of independent effects.

Finally, we applied the tool to leukemia and lymphoma

data. Our classification was very successful with 100%

accuracy in the cross validation for both outcomes, simi-

larly to what has been reported previously using multiple

classification techniques [26,28]. The rule visualization

provided a fast overview of the rule models and showed

that there was very little overlap of conditions between

the rules. This was likely caused by the small number of

objects which allowed the individual rules to be of high

quality; thus without the need for the rule-generation al-

gorithm to construct a set of partly overlapping rules.

Using the rule networks we were able to observe several

possible interactions, of which many were computation-

ally validated on our data. We believe it would be worth

studying those interactions further and ultimately to val-

idate them experimentally.

By making the Ciruvis freely available on the web [19]

we hope that it will benefit the further research on rule-

based classifiers and interactions. Additionally, since de-

cision trees are commonly used and may be translated

into rules, the application of the tool on decision trees

would also provide an interesting extension.

Additional files

Additional file 1: Table S1. Description of parameters and possible

values for the rule submission form.

Additional file 2: Figure S1. (A) Ciruvis submission form. (B) Ciruvis

figure for the selected outcome “1” (high). Rules for the selected

connection between totalRooms = [3148,*) and medianIncome = [4.7435,*)

are shown to the right.

Additional file 3: Supplementary methods. Supplementary

description of the methods.
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Additional file 4: Figure S2. The number of correctly classified objects

varied for different maximal correlation (X) and level of interaction (Y).

The points A-L here represent the different parameters choices in Figure 1.

The average standard error of the number of correctly classified objects

in the replicates with the same X and Y was 12.2 (95% CI 0.0-22.5), with

datasets with the lowest X and Y having the highest variation.

Additional file 5: Figure S3. Correlation between pairs of features and

decision in the California Housing dataset are displayed in the upper half

as filled circles with size relative to the correlation and in the lower half

as values. Positive correlations are colored from white to blue (highest)

and negative correlations from white and red (highest).

Additional file 6: Figure S4. Rule networks for the California housing

data including the medianIncome feature. The color of the nodes shows

which feature it is, and the condition values are shown in increasing

order (low, middle-low, middle-high, high) on the circle.

Additional file 7: Table S2. Calculation of relative risks (RR) and their

confidence intervals (CI) for each of the ten strongest connections for

each outcome, as well as the expected (exp) values. Connections that

had a RR significantly greater than what would be expected assuming

independent effects are marked with yellow background and may

indicate interaction effects. An asterisk ‘*’ in the intervals denotes + or - ∞.

Additional file 8: Table S3. The 30 most significant features for the

lymphoma data (p-values calculated by MCFS). The original name refer to

the internal name in the source data set. The gene name is given

whenever it was available. The range for the discretized expression values

are given as Low and High.

Additional file 9: Table S4. The 30 most significant features for the

leukemia data (p-values calculated by MCFS). The original name refer to

the internal name in the source data set. The gene name is given

whenever it was available. The range for the discretized expression values

are given as Low, Medium (if applicable) and High.
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