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Abstract—We present a simple algorithm to compute the when a singular value decomposition (SVD) is considered.

factors of a Unimodular-Upper (UU) polynomial matrix decom-  This decomposition assumes thidtz) and U(z) are (FIR)

position. The algorithm relies on the classical LU factoriation araunitarv polvnomial matricege. thev satis
and the inverse of the unimodular factor is also provided. P y poly - y fy

Such decomposition is useful for spatial multiplexing in MMO ~ _ o _
channel transmission system since it enables to reduce thelMO U(x)U(z) = I andV(2)V(z) = I,
channel matrix into independent SISO channels by a pre- and . . . . .
post-filtering. Unlike the classical QR-based polynomial ratrix v!here the md? Sta“‘?'s for the paraconjug.atlon, defined by:
Singular Values Decomposition (QR-PMSVD), the proposed UU X (2) = X*(1/Z). For instance, the paraconjugatefz) =
method allows to completely cancel the co-channel interfence >, X2" is given byX (2) = 3, X;2~". The sign denotes
(CCI). Moreover, most of the resulting independent SISO cha-  the transpose-conjugate.

nels are likely to be reduced to simple additive noise chant i.e. Note however that a polynomial matrix SVD with polyno-

with no InterSymbol Interference. However, the noise is caured ial f d S 141, T . h
and possibly enhanced due to the non unitary property of the Mial factors does not existin general [4]. Two main appresc

corresponding post filter. The complexity and sum rate capaty are found in the literature:
performance of the proposed method are studied and compared ; .
with QR-PMSVD. Forster, McWhirter et al. [3]:

forall z € C,

Apply successive elementary Laurent polynomial Givens ro-
|. INTRODUCTION tations to iteratively zero the largest coefficient in magade,
beneath the diagonal. This produces FIR paraunitary factor
U(z) andV (z). The factorD(z) is also a Laurent polynomial

L but only approximately diagonal: the largest coefficiemts i
H(z) = Zﬂkzk magnitude, beneath the diagonal are less than a prescribed
k=0 tolerance parameter The effect ofe in the CCl as well as
in the system performance is studied in [7]. In addition, the
degrees of the involved polynomials grow fast in generag, th
is the reason why a truncation step is introduced. Howelver, t
paraunitary property is lost with the truncation, which e
is measured by some parameter

D. Cescato and H. Bolcskei [2]:
where the factord/(z), D(z) andU(z) are simple and struc- apply classical SVD decomposition to samples of the orifjina
tured polynomial matrices. The difficulty lies in the cormastt matrix H (z;) = U(z:)D(z:)V (z:),i = 1,2, .. .. The factors of
that the factors be also polynomial. Such decomposition {ige polynomial decomposition are deduced by polynomial in-
useful in Multiple-Input Multiple-Output (MIMO) channel terpolation of the samples of the factors respectively. e\
transmission system. The polynomial matfik(z) then rep- the nice properties of the sample matrices (easy invetyipil
resents the FIR channel transfer function. paraunitary,...) are not guaranteed to hold after intexpmi.

The inverse of the factor§(z) andV(z) are used as post—k9 this paper, we investigate a Unimodular-Upper (UU) de-

and pre-coders respectively in order to reduce the MIMCom osition for polvnomial matrices. from the classidal
channel to a simpler fornD(z). These inverses are not only position poly al Ices, « 108
decomposition. More precisely, given @>*? polynomial

assumed to exist but also, it is required that they are Lauren . . T
polynomials and easy, if not immediate, to compute. matrix H(z), the problem is to write it in the form

Ideally, the form ofD(z) is diagonal [1], [5], [7]. Diagonal- H(z) = U(2)R(2),
ization of the system in space means the transformationeof th
MIMO channel in N = min(p, ¢) separate and independantvhereR(z) is an upper triangular polynomial matrix abd )
single input single output (SISO) channels, so that themmis is a unimodular polynomial matrix. Recall that a unimodular
co-channel interference (CCI). This is achieved for exampinatrix is a square polynomial matrix with constant nonzero

Let H(z) € CP*? a polynomial matrixj.e.

where each coefficientl;, is ap x g—complex matrix andl
is the formal degree of the polynomial.

We consider the problem of the decompositionfz) in
the form



determinant. It therefore admits a polynomial inverse. lispp where [, is the k x k identity matrix. A direct verification
ing the same decomposition to the transpose of the resultstgpws that
factor R(z) above provides a factorization of the form: di(z)  h12(z) his(z) hia(z

H(z) = U(2)D(2)V(2),

where V(z) and U(z) are two unimodular matrices and
D(z) is a diagonal polynomial matrix. The rest of this paper
is organized as follow. The proposed UU decomposition igow, one can apply a first step of a classical Gaussian
detailed in section Il. It is well known that such decompiosit elimination to zero the off-diagonal elements of the first
always exists and can be obtained from solutions of Bezatdlumn. This amounts to multiplying the above matrix by the
equations. However, we present a simple and explicit algilewer triangular polynomial matrix:

0 52,2
h3,1(z) haz2
ha,1(z) hapa(z ha3(z ha,4(z

)
Hi(2) = A1 (2)H(z) = ; 4
)

rithm to compute the factab(z) and the unimodular matrices 1
U(z) and V (z) together with their respective inverses. Then : i
section Il is devoted to the calculation of the sum rate he t Ti(z) = . (5)
section IV, some numerical results regarding the sum rates —hs,1(2) 1
attained by the different transmission schemes and thair co —haa(2) 1
in complexity is presented. The result is denoted by7: (=) = T (2)A; (z)H(z) and it
1. UU POLYNOMIAL MATRIX DECOMPOSITION reads as:

The proposed UU decomposition follows the same steps as di(2) ‘ hi2(2) hi3(2) hia(z)
the classical LU factorization (or Gauss elimination). btk 0 | Toa(z) h23(z) hoa(z)
step, however, a preprocessing is required in order to educ Hi(z) = 0 | Tisa(e) Tras(z) Trsa(e) (6)
the pivot element to a constant, subsequently set to 1. Timbeg = = =

0 ha2(z) has(z) haa(z)

let us take a simple example ofdax 4 polynomial matrix.
The same steps are now repeated for the lower-right block of
(2) (2) (2) (2) H;(2). In the second column we obtain:
H(z) = ho1(2)  hop2(z) h2s(z)  h2a(z) @ Hy(z) :.IQ(Z)ZQ(Z)Hl(Z)_ .
(2) (2) (2) (2) Finally, we obtain the triangular polynomial matrix

haa(z)  haa(z)

di(z) hi2(2) his(2) hia(z)
Assume that the polynomials ; (z) andhs 1 (z) are coprime. 0 da(z)  hos(z) hoa(2)
Then, let us denote byaf ,(z), b}, (2)] any pair of polyno-  R(z) = As(z)Ha(z) = ’ .
. . ’ .7 0 0 d;;(z) h374(2:)
mials solving the Bezout equation. .
# Ii 0 0 0 h474(2:)
hl,l(z)hlJ(z) + hQ,I(Z)hQ,l(Z) =1L 2 @)
If necessary, we may consider a permutation of the rows & summarize, note that this last matrix reads as
H(z) in order to get (2). This may however be insufficient, R(2) = As(2)Ta(2) A ()T (2) A (2) H (2) ®)

e.g. when the first column ofi (z), notedh,(z), is not an

irreducible polynomial vector. In such case we may write: Each matrix L;(z) is lower triangular unimodular and its

. . . . t A ~ inverse is obtained by simply changing the sign of the off-

hi(z) = d(2) [hl,l(z) h2,1(2) h31(2) hap(2)] = d(2)h1(2)  diagonal entries. EacB;(z) as in (3) is also unimodular and:

where d(z) is the greatest commom divisogad) of the . . 1

components oh; (z). The remaining polynomial vectdr, (z) —JB;(2)J = B, (z), whereJ = [ 1 0 ] ;1=1,2,3.

is thus irreducible and we assume that the Bezout equatjon (2

holds by reglacing the polynomials; 1 (z) by their reduced Now on, we set: Ai(2) = Ai(2)7 Y, Li(2) = Li(2) L.

counterparts; 1 (z). In this latter cased we séf(z) = d(z). Then, the preceding steps provide a UU decompostion of the

Otherwise,d;(z) = 1 andhy(z) = hy(z). If, nonetheless (2) polynomial matrixH (z):

still fails for all pairs whileh, (2) is irreducible, then the right

hand side of (2) is replaced (by tiyed of the considered pair H(z) = U(z)R(=) ©)

and the algorithm proceeds, following the procedure abovewherelU (z) = A;(z)L1(z)A2(2)L2(2)A3(2) is a unimodular

Next, we introduce the block diagonal matrix polynomial matrix andR(z) is the upper triangular polynomial

matrix obtained in the last step of the algorithm described
above. Applying the same decomposition to the right factor i

Bi(z) ‘ 0 ] (9), namelyR(z)! = V(2)'D(z) provides a factorization of

0 | Iz the form H(z) = U(z)D(2)V (z), whereV(z) andU(z) are
1 two unimodular matrices and(z) is a diagonal polynomial
(3) matrix.

h’i,l(z) hg,1(z)

Zl(z) _ —hzyl(z) h171(2:)

‘ 1



This decomposition can be generalized for any given matrix ~where we have seb(e’”) = Cj .(e’*)Cy.(e’).
H € CP*4. In the general case, the decomposition ends up

after a number of iteration given byin(p,¢). The factors ) ] ) ) ]
V=1(z) and U~'(z) can be used as post- and pre-coders For the numerical simulations, we consider a spatial mul-

respectively in order to reduce the MIMO channel to itiPlexing scheme withV; transmit antennas and, receive
equivalentD(z). Since D(z) is exactly diagonal, there is no@ntennas. The MIMO channél(z) is modeled as:
co-channel interference (CCI) unlike with other methods [3 L—1

[2]. Note also that we may verify by direct inspection that, f H(z) = Z Hie ol (16)
exemple, the first entry ab(z) will correspond to theycd of 1=0

all the polynomials in the first row and first column &f(z). where the elements of thél,’s are obtained from a zero-
This shows that the probability that the diagonal elemefts mean circularly symmetric normalized Gaussian distriuti
D(z) be equal to one is high, except for the last one. and o € RT is added in order to obtain an exponentially

1. SUM RATE CAPACITY decaying power-delay-profile.

Let H(z) € CP*7 a wideband MIMO channel and (=) The figures 1 and 2 show the impulse responses of the di-

andV,,(z) the post- and pre-coders respectively. The Commagonallzed matrix)(z) obtained respectively by QR-PMSVD

o ) . . : .- and UU decomposition.
nication process in spatial multiplexing context is:
Y = Upo(2)H(2)Vpr(2)2(2) + Upo(2)n(z)  (10) i o
wherey € CP*! is the received signaky € C?*! the signal 4 =
vector with covarianc&(zz*) = 21, andn a white Gaussian I M A A
1JLHM _ I
The reduced MIMO channel depends on the decomposition
and we consider the following two possibilities: 4 M,
« UU decompostion witi/,, = U~ andV,, = V~1: In memmommems
this casey = D(z)z(z) + U~1(2)n(z). There is no CCl Fig. 1. Impulse response of diagonalized Matiixz) obtained by QR-
the sum rate can be simply calculated by:
2 Uith(eJ“’)D;k(ejw) L
log, ST —5 w B N R
0 oxU. (e2) (U ) (e) “1
(12) "
where Dy, 1, (-) are the diagonal elements @(-), Uy, TR ST T
stands for thé:-th line of U. ]
L

IV. SIMULATIONS RESULTS
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By introducing the decomposition df(z), (10) becomes:
unitary and this will affect the filtered noise properties.

Yy = Upo(2)U(2) D(2)V (2)Vpr (2)(2) + Upo(2)n(2)  (11)
By considering an equal gain transmission scheme [6],

min(p,q)

1+

k=1

noise vector with covariancé(nn*) = 021,
becauseD(z) is diagonal. HowevellU(z) is not para- PMSVD decomposition with = 0.01 and = 10~°.
e QR-PMSVD of Forster, McWhirter et al. [3]: In this

case,D(z) is only approximately diagonal. Equation (11) T I SR UUETINI S NS
becomes:

_ _ _ Fig. 2. Impulse response of diagonalized MatiiXz) obtained by UU
y=U()U(z) D(2) V(2)V(2) z(z) + U(z)n(z) (13) decomposition.
In,+Ue A+De In,+Ve w The matrix D(z) is not diagonal with QR-PMSVD algo-
whereU, andV, are the errors caused by the truncatiofithm. However, the coefficients beneath the diagonal are in

and D, is the off diagonal part ofD(z) caused by the magnitude less thaawhich is set t00.01 in this simulation.

fact that the convergence criterian# 0. Thereby (13) Clearly, the decomposition error decreases for decreasing
can be rewritten as: By contrast, the complexity for post- and pre-coding may

B increase significantly, as shown in Table | which illustsate
y = Al2)a(z) + C(Z)x(_z) +w(2) (1_4) the maximum length of the post- and pre-coders. Unlike QR-
whereC(z) represents the CCl filter and(z) the noise pnMsVD, D(z) is diagonal with UU and the post- and pre-
component. Sincé\(z) is diagonal, the sum rate can becoder are much less complex (see Table 1)
calculated by: : : ' .

' The comparison in terms of sum rate versus SNR obtained
min(,0) 2’1 ) o2 Ak (e7)Af 1 (e7) through a MIMO2 x 2 and MIMO 3 x 3 schemes, with several
kz_l /O o821+ 02®(e) + 02U (e7)Uk,.(e2%) “* values of QR-PMSVD algorithm parameters, is represented

B (15) respectively in Fig. 3 and Fig. 4.




TABLE |

MAXIMUM LENGTH (NUMBER OF COEFFICIENT$ OF THE POSTCODER

AND PRE-CODERFIR
Parameters MIMO 2x2 MIMO 3x3
Pre-coder Post-coder Pre-coder Post-coder

uu 11 6 28 12

QR-PMSVDe =10~ n=10"7% 28 44 81 121
QR-PMSVDe =101 y=10"° 28 44 81 121
QR-PMSVDe =102 =102 442 447 821 1056
QR-PMSVDe =10"2 p =109 622 628 954 1279
QR-PMSVDe =10"2 =102 746 835 1589 1751
QR-PMSVDe =103 =10 ° 1127 1247 2041 2164

150 o
10 JJo—0—0 QRBC e =10""
>—>—>QRBC e = 1072
[+ QRBCe=10"

—— 117
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Fig. 3.

truncation parameten = 109

for variouse.

Sum Rate averaged oveb0 MIMO 2 x 2 Channel realization for
UU and QR-PMSVD decomposition. The Channel length ias= 7, the

#04lo o o QRBCe=10"
>—>—>QRBC e = 1072
(< QRBC:=10"

—— 17

Channel capacity

separate SISO channels are equivalent to Gaussian channel.
Hence, there is no inter-symbol interference (ISI) on these
channels and the equalization becomes very simple. Figure 5
which presents the received signal constellation withQ) AM
modulation in MIMO 3 x 3 context, shows the effect of ISI.
As we can see in figure boxes UU-anterinand UU-antenna

2, which represent the firsWg = 2 SISO channels, there is
no ISI. We just have the noise component effect. However in
the other figure boxes we note the presence of ISI. As we have
previously noted, this situation of no ISI happens in gehera
with high probability.

UU- Antenna 1

UU- Antenna 2 UU- Antenna 3

P

0 2

InPhase

InPhase in Phase

QRBC- Antenna 1 QRBC- Antenna 2 QRBC- Antenna 3

Fig. 5. Received signal constellation for 4-QAM modulatiorMIMO 3 x 3
context. The SNR is set t80dB.

V. CONCLUSION

The proposed UU polynomial decomposition algorithm
completely eliminates the CCI in MIMO spatial multiplexing
scheme. In addition, except in the last SISO channel, the ISI
in all channels is likely to be absent. The sum rate obtained
with the decomposition can not, however, achieve the cHanne
capacity because of the non unitary effect of the post-coder
Nevertheless, with equal complexity, the obtained sum igate
better than that achieved by the classical QR-based polighom
matrix approximate SVD decomposition.
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