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Abstract—We present a simple algorithm to compute the
factors of a Unimodular-Upper (UU) polynomial matrix decom-
position. The algorithm relies on the classical LU factorization
and the inverse of the unimodular factor is also provided.
Such decomposition is useful for spatial multiplexing in MIMO
channel transmission system since it enables to reduce the MIMO
channel matrix into independent SISO channels by a pre- and
post-filtering. Unlike the classical QR-based polynomial matrix
Singular Values Decomposition (QR-PMSVD), the proposed UU
method allows to completely cancel the co-channel interference
(CCI). Moreover, most of the resulting independent SISO chan-
nels are likely to be reduced to simple additive noise channels, i.e.
with no InterSymbol Interference. However, the noise is coloured
and possibly enhanced due to the non unitary property of the
corresponding post filter. The complexity and sum rate capacity
performance of the proposed method are studied and compared
with QR-PMSVD.

I. I NTRODUCTION

Let H(z) ∈ Cp×q a polynomial matrix,i.e.

H(z) =
L∑

k=0

Hkz
k

where each coefficientHk is a p× q−complex matrix andL
is the formal degree of the polynomial.

We consider the problem of the decomposition ofH(z) in
the form

H(z) = U(z)D(z)V (z),

where the factorsV (z), D(z) andU(z) are simple and struc-
tured polynomial matrices. The difficulty lies in the constraint
that the factors be also polynomial. Such decomposition is
useful in Multiple-Input Multiple-Output (MIMO) channel
transmission system. The polynomial matrixH(z) then rep-
resents the FIR channel transfer function.

The inverse of the factorsU(z) andV (z) are used as post-
and pre-coders respectively in order to reduce the MIMO
channel to a simpler formD(z). These inverses are not only
assumed to exist but also, it is required that they are Laurent
polynomials and easy, if not immediate, to compute.

Ideally, the form ofD(z) is diagonal [1], [5], [7]. Diagonal-
ization of the system in space means the transformation of the
MIMO channel inN = min(p, q) separate and independant
single input single output (SISO) channels, so that there isno
co-channel interference (CCI). This is achieved for example

when a singular value decomposition (SVD) is considered.
This decomposition assumes thatV (z) and U(z) are (FIR)
paraunitary polynomial matrices,i.e. they satisfy

Ũ(z)U(z) = I andV (z)Ṽ (z) = I, for all z ∈ C,

where the tilde stands for the paraconjugation, defined by:
X̃(z) = X∗(1/z̄). For instance, the paraconjugate ofX(z) =∑

k Xkz
k is given byX̃(z) =

∑
k X

∗

kz
−k. The sign∗ denotes

the transpose-conjugate.
Note however that a polynomial matrix SVD with polyno-

mial factors does not exist in general [4]. Two main approaches
are found in the literature:

Forster, McWhirter et al. [3]:
Apply successive elementary Laurent polynomial Givens ro-
tations to iteratively zero the largest coefficient in magnitude,
beneath the diagonal. This produces FIR paraunitary factors
U(z) andV (z). The factorD(z) is also a Laurent polynomial
but only approximately diagonal: the largest coefficients in
magnitude, beneath the diagonal are less than a prescribed
tolerance parameterǫ. The effect ofǫ in the CCI as well as
in the system performance is studied in [7]. In addition, the
degrees of the involved polynomials grow fast in general, this
is the reason why a truncation step is introduced. However, the
paraunitary property is lost with the truncation, which degree
is measured by some parameterµ.

D. Cescato and H. Bolcskei [2]:
Apply classical SVD decomposition to samples of the original
matrixH(zi) = U(zi)D(zi)V (zi), i = 1, 2, . . .. The factors of
the polynomial decomposition are deduced by polynomial in-
terpolation of the samples of the factors respectively. However
the nice properties of the sample matrices (easy invertibility,
paraunitary,...) are not guaranteed to hold after interpolation.

In this paper, we investigate a Unimodular-Upper (UU) de-
composition for polynomial matrices, from the classicalLU
decomposition. More precisely, given aCp×q polynomial
matrix H(z), the problem is to write it in the form

H(z) = U(z)R(z),

whereR(z) is an upper triangular polynomial matrix andU(z)
is a unimodular polynomial matrix. Recall that a unimodular
matrix is a square polynomial matrix with constant nonzero



determinant. It therefore admits a polynomial inverse. Apply-
ing the same decomposition to the transpose of the resulting
factorR(z) above provides a factorization of the form:

H(z) = U(z)D(z)V (z),

where V (z) and U(z) are two unimodular matrices and
D(z) is a diagonal polynomial matrix. The rest of this paper
is organized as follow. The proposed UU decomposition is
detailed in section II. It is well known that such decomposition
always exists and can be obtained from solutions of Bezout
equations. However, we present a simple and explicit algo-
rithm to compute the factorD(z) and the unimodular matrices
U(z) andV (z) together with their respective inverses. Then
section III is devoted to the calculation of the sum rate. In the
section IV, some numerical results regarding the sum rates
attained by the different transmission schemes and their cost
in complexity is presented.

II. UU POLYNOMIAL MATRIX DECOMPOSITION

The proposed UU decomposition follows the same steps as
the classical LU factorization (or Gauss elimination). In each
step, however, a preprocessing is required in order to reduce
the pivot element to a constant, subsequently set to 1. To begin,
let us take a simple example of a4× 4 polynomial matrix.

H(z) =




h1,1(z) h1,2(z) h1,3(z) h1,4(z)

h2,1(z) h2,2(z) h2,3(z) h2,4(z)

h3,1(z) h3,2(z) h3,3(z) h3,4(z)

h4,1(z) h4,2(z) h4,3(z) h4,4(z)


 (1)

Assume that the polynomialsh1,1(z) andh2,1(z) are coprime.
Then, let us denote by [h♯

1,1(z), h
♯
2,1(z)] any pair of polyno-

mials solving the Bezout equation.

h♯
1,1(z)h1,1(z) + h♯

2,1(z)h2,1(z) = 1. (2)

If necessary, we may consider a permutation of the rows of
H(z) in order to get (2). This may however be insufficient,
e.g. when the first column ofH(z), notedh1(z), is not an
irreducible polynomial vector. In such case we may write:

h1(z) = d(z)
[
ĥ1,1(z) ĥ2,1(z) ĥ3,1(z) ĥ4,1(z)

]t
△
= d(z)ĥ1(z)

where d(z) is the greatest commom divisor (gcd) of the
components ofh1(z). The remaining polynomial vector̂h1(z)
is thus irreducible and we assume that the Bezout equation (2)
holds by replacing the polynomialshi,1(z) by their reduced
counterpartŝhi,1(z). In this latter cased we setd1(z) = d(z).
Otherwise,d1(z) = 1 and ĥ1(z) = h1(z). If, nonetheless (2)
still fails for all pairs whileh1(z) is irreducible, then the right
hand side of (2) is replaced by thegcd of the considered pair
and the algorithm proceeds, following the procedure above.

Next, we introduce the block diagonal matrix

A1(z) =




h
♯
1,1(z) h

♯
2,1(z)

−h2,1(z) h1,1(z)

1

1


 =

[
B1(z) 0

0 I2

]

(3)

where Ik is the k × k identity matrix. A direct verification
shows that

H̃1(z) = A1(z)H(z) =




d1(z) h̃1,2(z) h̃1,3(z) h̃1,4(z)

0 h̃2,2(z) h̃2,3(z) h̃2,4(z)

h3,1(z) h3,2(z) h3,3(z) h3,4(z)

h4,1(z) h4,2(z) h4,3(z) h4,4(z)




(4)

Now, one can apply a first step of a classical Gaussian
elimination to zero the off-diagonal elements of the first
column. This amounts to multiplying the above matrix by the
lower triangular polynomial matrix:

L1(z) =




1

0 1

−ĥ3,1(z) 1

−ĥ4,1(z) 1


 (5)

The result is denoted byH1(z) = L1(z)A1(z)H(z) and it
reads as:

H1(z) =




d1(z) h̃1,2(z) h̃1,3(z) h̃1,4(z)

0 h̃2,2(z) h̃2,3(z) h̃2,4(z)

0 h̃3,2(z) h̃3,3(z) h̃3,4(z)

0 h̃4,2(z) h̃4,3(z) h̃4,4(z)




(6)

The same steps are now repeated for the lower-right block of
H1(z). In the second column we obtain:

H2(z) = L2(z)A2(z)H1(z)
Finally, we obtain the triangular polynomial matrix

R(z) = A3(z)H2(z) =




d1(z) h̃1,2(z) h̃1,3(z) h̃1,4(z)

0 d2(z) ȟ2,3(z) ȟ2,4(z)

0 0 d3(z) ĥ3,4(z)

0 0 0 ĥ4,4(z)




(7)
To summarize, note that this last matrix reads as

R(z) = A3(z)L2(z)A2(z)L1(z)A1(z)H(z) (8)

Each matrixLi(z) is lower triangular unimodular and its
inverse is obtained by simply changing the sign of the off-
diagonal entries. EachBi(z) as in (3) is also unimodular and:

−JB
t

i(z)J = B
−1

i (z), whereJ =

[
0 1

−1 0

]
, i = 1, 2, 3.

Now on, we set: Ai(z) = Ai(z)
−1, Li(z) = Li(z)

−1.
Then, the preceding steps provide a UU decompostion of the
polynomial matrixH(z):

H(z) = U(z)R(z) (9)

whereU(z) = A1(z)L1(z)A2(z)L2(z)A3(z) is a unimodular
polynomial matrix andR(z) is the upper triangular polynomial
matrix obtained in the last step of the algorithm described
above. Applying the same decomposition to the right factor in
(9), namelyR(z)t = V (z)tD(z) provides a factorization of
the formH(z) = U(z)D(z)V (z), whereV (z) andU(z) are
two unimodular matrices andD(z) is a diagonal polynomial
matrix.



This decomposition can be generalized for any given matrix
H ∈ Cp×q. In the general case, the decomposition ends up
after a number of iteration given bymin(p, q). The factors
V −1(z) and U−1(z) can be used as post- and pre-coders
respectively in order to reduce the MIMO channel to its
equivalentD(z). SinceD(z) is exactly diagonal, there is no
co-channel interference (CCI) unlike with other methods [3],
[2]. Note also that we may verify by direct inspection that, for
exemple, the first entry ofD(z) will correspond to thegcd of
all the polynomials in the first row and first column ofH(z).
This shows that the probability that the diagonal elements of
D(z) be equal to one is high, except for the last one.

III. SUM RATE CAPACITY

Let H(z) ∈ Cp×q a wideband MIMO channel andUpo(z)
andVpr(z) the post- and pre-coders respectively. The commu-
nication process in spatial multiplexing context is:

y = Upo(z)H(z)Vpr(z)x(z) + Upo(z)n(z) (10)

wherey ∈ C
p×1 is the received signal,x ∈ C

q×1 the signal
vector with covarianceE(xx∗) = σ2

xIq andn a white Gaussian
noise vector with covarianceE(nn∗) = σ2

nIp
By introducing the decomposition ofH(z), (10) becomes:

y = Upo(z)U(z)D(z)V (z)Vpr(z)x(z) + Upo(z)n(z) (11)

The reduced MIMO channel depends on the decomposition
and we consider the following two possibilities:

• UU decompostion withUpo = U−1 andVpr = V −1: In
this case,y = D(z)x(z)+U−1(z)n(z). There is no CCI
becauseD(z) is diagonal. HoweverU(z) is not para-
unitary and this will affect the filtered noise properties.
By considering an equal gain transmission scheme [6],
the sum rate can be simply calculated by:

min(p,q)∑

k=1

∫ 2π

0

log2

∣∣∣∣∣1 +
σ2
xDk,k(e

ω)D∗
k,k(e

ω)

σ2
nU

−1
k,: (e

ω)(U−1
k,: )

∗(eω)

∣∣∣∣∣ dω

(12)
whereDk,k(·) are the diagonal elements ofD(·), Uk,:

stands for thek-th line of U .
• QR-PMSVD of Forster, McWhirter et al. [3]: In this

case,D(z) is only approximately diagonal. Equation (11)
becomes:

y = Ũ(z)U(z)︸ ︷︷ ︸
INr

+Ue

D(z)︸ ︷︷ ︸
∆+De

V (z)Ṽ (z)︸ ︷︷ ︸
INt

+Ve

x(z) + Ũ(z)n(z)︸ ︷︷ ︸
w

(13)

whereUe andVe are the errors caused by the truncation
andDe is the off diagonal part ofD(z) caused by the
fact that the convergence criterionǫ 6= 0. Thereby (13)
can be rewritten as:

y = ∆(z)x(z) + C(z)x(z) + w(z) (14)

whereC(z) represents the CCI filter andw(z) the noise
component. Since∆(z) is diagonal, the sum rate can be
calculated by:
min(p,q)∑

k=1

∫ 2π

0

log2

∣∣∣∣∣1 +
σ
2
x∆k,k(e

ω)∆∗

k,k(e
ω)

σ2
xΦ(eω) + σ2

nU
∗

k,:(e
ω)Uk,:(eω)

∣∣∣∣∣ dω.

(15)

where we have setΦ(eω) = C
∗

k,:(e
ω)Ck,:(e

ω).

IV. SIMULATIONS RESULTS

For the numerical simulations, we consider a spatial mul-
tiplexing scheme withNt transmit antennas andNr receive
antennas. The MIMO channelH(z) is modeled as:

H(z) =

L−1∑

l=0

Hle
−αlzl (16)

where the elements of theHl’s are obtained from a zero-
mean circularly symmetric normalized Gaussian distribution
and α ∈ R+ is added in order to obtain an exponentially
decaying power-delay-profile.

The figures 1 and 2 show the impulse responses of the di-
agonalized matrixD(z) obtained respectively by QR-PMSVD
and UU decomposition.
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Fig. 1. Impulse response of diagonalized MatrixD(z) obtained by QR-
PMSVD decomposition withǫ = 0.01 andµ = 10−6.
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Fig. 2. Impulse response of diagonalized MatrixD(z) obtained by UU
decomposition.

The matrixD(z) is not diagonal with QR-PMSVD algo-
rithm. However, the coefficients beneath the diagonal are in
magnitude less thanǫ which is set to0.01 in this simulation.
Clearly, the decomposition error decreases for decreasingǫ.
By contrast, the complexity for post- and pre-coding may
increase significantly, as shown in Table I which illustrates
the maximum length of the post- and pre-coders. Unlike QR-
PMSVD, D(z) is diagonal with UU and the post- and pre-
coder are much less complex (see Table I).

The comparison in terms of sum rate versus SNR obtained
through a MIMO2×2 and MIMO 3×3 schemes, with several
values of QR-PMSVD algorithm parameters, is represented
respectively in Fig. 3 and Fig. 4.



TABLE I
MAXIMUM LENGTH (NUMBER OF COEFFICIENTS) OF THE POST-CODER

AND PRE-CODERFIR

Parameters MIMO 2x2 MIMO 3x3
Pre-coder Post-coder Pre-coder Post-coder

UU 11 6 28 12

QR-PMSVDǫ = 10−1 µ = 10−3 28 44 81 121
QR-PMSVDǫ = 10−1 µ = 10−6 28 44 81 121
QR-PMSVDǫ = 10−2 µ = 10−3 442 447 821 1056
QR-PMSVDǫ = 10−2 µ = 10−6 622 628 954 1279
QR-PMSVDǫ = 10−3 µ = 10−3 746 835 1589 1751
QR-PMSVDǫ = 10−3 µ = 10−6 1127 1247 2041 2164

0 20 4010 305 15 25 35
0

100

20

40

60

80

120

140

160

10

30

50

70

90

110

130

150

SNR

S
um

 R
at

e

Fig. 3. Sum Rate averaged over100 MIMO 2× 2 Channel realization for
UU and QR-PMSVD decomposition. The Channel length wasL = 7, the
truncation parameterµ = 10−6 for variousǫ.
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Fig. 4. Sum Rate averaged over100 MIMO 3× 3 Channel realization for
UU and QR-PMSVD decomposition. The Channel length wasL = 7, the
truncation parameterµ = 10−6 for variousǫ.

Firstly, the sum rate obtained with UU algorithm can not
achieve the channel capacity. This is due to the fact that
the post-coder (U−1) is not para-unitary and then the noise
component is affected (see (12)).

Secondly, in the QR-PMSVD case, the sum rate is almost
equal to the channel’s capacity whenǫ is selected close to
zero (hereǫ = 10−3). However, if this parameter increases for
obtaining more realistic FIR post- and pre-coder, as close to
that obtained with UU (see Table.I), the sum rate with QR-
PMSVD becomes worse due to the important CCI.

To finish, we analyze the elements inD(z) obtained here by
UU decomposition. All diagonal elements ofD(z) are equal to
1, except the last one. Thus, the firstNG = min(Nt, Nr)− 1

separate SISO channels are equivalent to Gaussian channel.
Hence, there is no inter-symbol interference (ISI) on these
channels and the equalization becomes very simple. Figure 5,
which presents the received signal constellation with4−QAM
modulation in MIMO3 × 3 context, shows the effect of ISI.
As we can see in figure boxes UU-antenna1 and UU-antenna
2, which represent the firstNG = 2 SISO channels, there is
no ISI. We just have the noise component effect. However in
the other figure boxes we note the presence of ISI. As we have
previously noted, this situation of no ISI happens in general
with high probability.
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Fig. 5. Received signal constellation for 4-QAM modulationin MIMO 3×3
context. The SNR is set to30dB.

V. CONCLUSION

The proposed UU polynomial decomposition algorithm
completely eliminates the CCI in MIMO spatial multiplexing
scheme. In addition, except in the last SISO channel, the ISI
in all channels is likely to be absent. The sum rate obtained
with the decomposition can not, however, achieve the channel
capacity because of the non unitary effect of the post-coder.
Nevertheless, with equal complexity, the obtained sum rateis
better than that achieved by the classical QR-based polynomial
matrix approximate SVD decomposition.
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