W. E. Arnoldi, The principle of minimized iterations in the solution of the matrix eigenvalue problem, Quarterly of Applied Mathematics, vol.9, issue.1, pp.17-29, 1951.
DOI : 10.1090/qam/42792

L. Friedrich and . Bauer, Das verfahren der treppeniteration und verwandte verfahren zur lösung algebraischer eigenwertprobleme, Zeitschrift für angewandte Mathematik und Physik ZAMP, pp.214-235, 1957.

S. Candel, Combustion dynamics and control: Progress and challenges, Proceedings of the combustion institute, pp.1-28, 2002.
DOI : 10.1016/S1540-7489(02)80007-4

L. Crocco, Aspects of Combustion Stability in Liquid Propellant Rocket Motors Part I: Fundamentals. Low Frequency Instability With Monopropellants, Journal of the American Rocket Society, vol.21, issue.6, pp.163-178, 1951.
DOI : 10.2514/8.4393

L. Crocco, Aspects of Combustion Stability in Liquid Propellant Rocket Motors Part II: Low Frequency Instability with Bipropellants. High Frequency Instability, Journal of the American Rocket Society, vol.22, issue.1, pp.7-16, 1952.
DOI : 10.2514/8.4410

F. E. Culick and P. Kuentzmann, Unsteady Motions in Combustion Chambers for Propulsion Systems. NATO Research and Technology Organization, 2006.

D. R. Fokkema, G. L. Sleijpen, and H. A. , Jacobi--Davidson Style QR and QZ Algorithms for the Reduction of Matrix Pencils, SIAM Journal on Scientific Computing, vol.20, issue.1, p.94, 1998.
DOI : 10.1137/S1064827596300073

R. Lehoucq and D. Sorensen, Arpack: Solution of large scale eigenvalue problems with implicitly restarted arnoldi methods. www.caam.rice.edu/software/arpack. User's guide, 1997.

R. B. Lehoucq and D. C. Sorensen, Deflation Techniques for an Implicitly Restarted Arnoldi Iteration, SIAM Journal on Matrix Analysis and Applications, vol.17, issue.4, pp.789-821, 1996.
DOI : 10.1137/S0895479895281484

T. Lieuwen and B. T. Zinn, The role of equivalence ratio oscillations in driving combustion instabilities in low NOx gas turbines, Symposium (International) on Combustion, vol.27, issue.2, pp.1809-1816, 1998.
DOI : 10.1016/S0082-0784(98)80022-2

F. Merz, C. Kowitz, E. Romero, J. E. Roman, and F. Jenko, Multi-dimensional gyrokinetic parameter studies based on eigenvalue computations, Computer Physics Communications, vol.183, issue.4, 2011.
DOI : 10.1016/j.cpc.2011.12.018

F. Nicoud, L. Benoit, C. Sensiau, and T. Poinsot, Acoustic Modes in Combustors with Complex Impedances and Multidimensional Active Flames, AIAA Journal, vol.45, issue.2, pp.426-441, 2007.
DOI : 10.2514/1.24933

URL : https://hal.archives-ouvertes.fr/hal-00908192

P. Salas, Numerical and physical aspects of thermoacoustic instabilities in annular combustion chambers -TH/CFD/13/85

T. Poinsot and D. Veynante, Theoretical and Numerical Combustion, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00270731

Y. Saad, Numerical methods for large eigenvalue problems, SIAM, vol.158, 1992.
DOI : 10.1137/1.9781611970739

Y. Saad and M. H. Schultz, GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems, SIAM Journal on Scientific and Statistical Computing, vol.7, issue.3, pp.856-869, 1986.
DOI : 10.1137/0907058

G. L. Sleijpen and H. A. , Van der Vorst. A Jacobi-Davidson iteration method for linear eigenvalue problems, SIAM Review, pp.267-293, 2000.

G. L. Sleijpen, H. A. Van-der, E. Vorst, and . Meijerink, Efficient expansion of subspaces in the Jacobi-Davidson method for standard and generalized eigenproblems, Electron. Trans. Numer. Anal, vol.7, pp.75-89, 1998.

G. W. Stewart, A Krylov--Schur Algorithm for Large Eigenproblems, SIAM Journal on Matrix Analysis and Applications, vol.23, issue.3, pp.601-614, 2001.
DOI : 10.1137/S0895479800371529

G. W. Stewart, Matrix Algorithms: Eigensystems, Society for Industrial Mathematics, vol.2, 2001.
DOI : 10.1137/1.9780898718058

Y. Zhou and Y. Saad, Block Krylov???Schur method for large symmetric eigenvalue problems, Numerical Algorithms, vol.12, issue.5, pp.341-359, 2008.
DOI : 10.1007/s11075-008-9192-9