D. L. Donoho, Compressed sensing, IEEE Transactions on Information Theory, vol.52, issue.4, pp.1289-1306, 2006.
DOI : 10.1109/TIT.2006.871582

URL : https://hal.archives-ouvertes.fr/inria-00369486

E. J. Candès and T. Tao, Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?, IEEE Transactions on Information Theory, vol.52, issue.12, pp.5406-5425, 2006.
DOI : 10.1109/TIT.2006.885507

M. A. Davenport, J. N. Laska, J. R. Treichler, and R. G. Baraniuk, The Pros and Cons of Compressive Sensing for Wideband Signal Acquisition: Noise Folding versus Dynamic Range, IEEE Transactions on Signal Processing, vol.60, issue.9, 1104.
DOI : 10.1109/TSP.2012.2201149

J. N. Laska and R. G. Baraniuk, Regime Change: Bit-Depth Versus Measurement-Rate in Compressive Sensing, IEEE Transactions on Signal Processing, vol.60, issue.7, pp.3496-3505, 2012.
DOI : 10.1109/TSP.2012.2194710

E. Arias-castro, E. J. Candès, A. Mark, and . Davenport, On the fundamental limits of adaptive sensing Information Theory, IEEE Transactions on, vol.59, issue.1, pp.472-481, 2013.

E. J. Candès and M. A. Davenport, How well can we estimate a sparse vector?, Applied and Computational Harmonic Analysis, vol.34, issue.2, pp.317-323, 2013.
DOI : 10.1016/j.acha.2012.08.010

R. D. Cook and L. Forzani, On the mean and variance of the generalized inverse of a singular Wishart matrix, Electronic Journal of Statistics, vol.5, issue.0, pp.146-158, 2011.
DOI : 10.1214/11-EJS602

R. Baraniuk, M. Davenport, R. Devore, and M. Wakin, A Simple Proof of the Restricted Isometry Property for Random Matrices, Constructive Approximation, vol.159, issue.2, pp.253-263, 2008.
DOI : 10.1007/s00365-007-9003-x

S. J. Press, Applied Multivariate Analysis: Using Bayesian and Frequentist Methods of Inference, 1982.

D. Von-rosen, On Moments of the Inverted Wishart Distribution, Statistics, vol.15, issue.3, pp.97-109, 1988.
DOI : 10.1080/03610929108830668

J. A. Díaz-garcía, R. Gutiérrez-jáimez13, ]. E. Candès, J. K. Romberg, and T. Tao, Distribution of the generalised inverse of a random matrix and its applications Stable signal recovery from incomplete and inaccurate measurements, Journal of statistical planning and inference Communications on Pure and Applied Mathematics, vol.136, issue.59 8, pp.183-192, 2006.

E. J. Candès, The restricted isometry property and its implications for compressed sensing, Comptes Rendus Mathematique, vol.346, issue.9-10, pp.589-592, 2008.
DOI : 10.1016/j.crma.2008.03.014

W. Dai and O. Milenkovic, Information Theoretical and Algorithmic Approaches to Quantized Compressive Sensing, IEEE Transactions on Communications, vol.59, issue.7, pp.1857-1866, 2011.
DOI : 10.1109/TCOMM.2011.051711.100204

G. Coluccia, A. Roumy, and E. Magli, Operational Rate-Distortion Performance of Single-Source and Distributed Compressed Sensing, IEEE Transactions on Communications, vol.62, issue.6, 2013.
DOI : 10.1109/TCOMM.2014.2316176

URL : https://hal.archives-ouvertes.fr/hal-00996698

R. Vershynin, Non?asymptotic random matrix theory, Compressed Sensing, pp.210-268