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Abstract—In this paper we introduce and analyse the λ-Alert
problem: in a single hop radio network a subset of stations is
activated. The aim of the protocol is to decide if the number
of activated stations is greater or equal to λ. This problem is
similar to the k-Selection problem. It can also be seen as an
extension of the standard Alert problem.

In our paper we consider the λ-Alert problem in various
settings. We describe characteristics of oblivious and adaptive
deterministic algorithms for the model with and without
collision detection. We also show some results for randomized
algorithms. In particular, we present a very efficient Las Vegas-
type algorithm which is immune to an adversary.
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I. INTRODUCTION

We consider a network of sensors spread on a large area

that can be used to monitor threats, for example fire or

earthquake. In the case of detection of symptoms such as

smoke or earthquakes the sensor should raise an alarm and

notify the whole network of danger. But in practice we

may want to raise the alarm only when at least a certain

number, say λ > 1, of sensors detect the threat. Consider,

for example, a situation where some small fraction of sensors

experiences decreased humidity conditions, which does not

necessarily mean that a fire has broken out. In this paper we

define and discuss the λ-Alert problem in a Wireless Sensor

Network. Informally, the problem can be stated as follows :

we have a set of n stations. Some of them are activated. Our

aim is to say if at least λ of them are activated. Special case,

when λ = 1 is called the Alert problem and was discussed,

in [17].

A. Model description

We consider a Wireless Sensor Network working in ad hoc

mode. Let N be the set of all stations. We assume that

|N | = n. Let K be the set of all activated sensors. We

denote |K| = k. Moreover, stations have unique labels from

the set [n] = {0, . . . , n − 1}. Time is divided into slots. In

each slot each station may broadcast or listen. If exactly one

station broadcasts in a single slot, all other stations can hear

the message and we say that the message is successfully

broadcast. Sensors are synchronized as they have access to

a global clock.

Each sensor is aware if its message was successfully

broadcast or not. If more than one station is broadcasting

none of the broadcast messages can be heard and we say

that Collision has occurred. Herein we consider two settings

- the model with collision detection (CD) (when stations may

distinguish the slot with broadcasting more than one station

from the slot without broadcasting stations) and without col-

lision detection (noCD). In the latter case the communication

channel can have only two states - BROADCASTING and

noBROADCASTING (Silence or Collision).

B. Problem definition

An instance of the λ-Alert problem consists of values of

n, λ and set K. Each sensor knows values n, λ and its own

state (activated or not). Of course, set K and value k are

not known to any sensor. At the end of the algorithm each

sensor finishes with the state ALERT or NOALERT . The

result ALERT is correct if and only if |K| ≥ λ. otherwise

NO ALERT is correct. We say that an algorithm returns a

correct answer for a given instance of the λ-Alert problem

if all sensors have the correct result after the execution of

the protocol. An algorithm is correct if it is correct for every

problem instance.

C. Notation

We assume that 0 < λ ≤ n. We denote by ri(K)
the result of transmission in the i-th time slot, ri ∈
{Silence, Signal, Collision}. We call an active sensor

which has not yet successfully transmitted a participant. We

will also denote by r(K) ∈ {ALARM,NOALARM} the

output of the algorithm.

D. Relations to other problems

To the best of our knowledge, the λ-Alert problem was not

considered before. However, many similar problems were

studied.

Conflict resolution: In the conflict resolution problem

(known also as k-Selection), all k activated sensors have to

transmit. More precisely, we have set K of activated sensors

(or processes). For each s ∈ K there must exist time slot

t, that only s broadcasts in t. This problem is similar to

our λ-Alert, but there is a key difference between these



problems. First of all, in λ-Alert, sensors do not have to get

exclusive access to the channel. Moreover, in our paper we

try to find procedures that are universal with respect to the

number of activated stations (i.e. parameter k). Indeed, our

procedure has to be correct for any k. There is rich literature

devoted to the selection problem. In the case with collision

detection, the k-Selection problem can be solved in time

O(k log n
k
) using an oblivious protocol described in [18]. In

this algorithm it is assumed that sensors are deactivated after

successful transmission. In the strict oblivious model, when

sensors must participate even after successful transmission,

the best known algorithms are based on superimposed codes

introduced in [16] and run in time O(k2 log n). An adaptive

algorithm with complexity O(k log n
k
) was presented by

Capetanakis [3]. A lower bound on time complexity of

Ω(k log n
k
) for the oblivious model was showed by Clementi,

Monti and Silvestri [7]. In the adaptive model Greenberg

and Winograd in [13] showed a Ω(k logk n) lower bound.

Another important paper related to the k-Selection problem

is [19].

Alert: The Alert problem is simply λ-Alert with λ = 1.

In other words, we only ask if there exists any activated

sensor. An energy efficient randomized algorithm solving

Alert in the model without collision detection, working in

time polylog n, is presented by Klonowski, Kutyłowski and

Zatopiański in [17]. Similar problems in different models

have been investigated in [6] and [21].

Group testing: This is the problem of identifying at

most d infected individuals from set N . A single test consists

in choosing any subset S ⊂ N and testing if any object

from S is infected. An oblivious algorithm solving the group

testing problem, based on superimposed codes with length

O(d2 log n), where n = |N |, is presented in [1], [2].

Wake-up problem: The alert problem is also related to

the Wake-up problem [4], [5], [11], [14], wherein a single

activated has to contact (wake-up) all other stations.

E. Organization of this paper

In this paper we investigate λ-Alert in various settings. In

Section II we present and analyse deterministic algorithms

- we show effective algorithms as well as some lower

bounds. Section III is devoted to randomized algorithms.

We give two solutions. Apart from theoretical analysis we

also present some simulations.

A significant number of presented solutions and proofs are

based on modifications of previous approaches, as marked,

in the text. In particular we very often use methods from

[23] and [13].

II. DETERMINISTIC ALGORITHMS

For each deterministic algorithm A we can denote by

TA(K) the runtime of the algorithm for given n, λ,K.

We also define TA = maxK TA(K). When it is obvious

which algorithm is considered, we omit the subscript A

and write just T . Each algorithm defines a sequence of

sets Q1, Q2, . . . , QT . In time slot i, only all active sensors

from set Qi are transmitting. So, the result of transmission

depends on the cardinality of set K ∩Qi. If the algorithm is

adaptive, then set Qt can depend on result of transmission

in time slots 1, 2, . . . , t−1. If the algorithm is oblivious, all

sets Qi are defined before the execution of the algorithm.

We assume that inactive stations are not broadcasting in any

slot, but only listen.

A. No collision detection

The simplest algorithm for problem is to assign to each

sensor a unique time slot. Then each activated sensor

broadcasts in its time slot and we can count number of the

active sensors. This algorithm needs time n. We show that

in the model without collision detection this algorithm is

optimal.

Lemma 2.1: In the model without collision detection the

runtime of any algorithm in the worst case must satisfy T >
n− λ.

Proof: Let us assume that the time of execution of the

procedure is T . For each sensor s we can define a function

p : N → {0, 1}T , such that p returns a vector for each

sensor. We denote by p(x)t, the t-th coordinate of vector

p(x). We define p in following way:

• p(x)t = 1, if sensor x broadcasts in time slot t,
provided that, it heard Silence in all previous slots,

• p(x)t = 0, otherwise.

We can define such function for both oblivious and adaptive

algorithms. Then we can construct a set X using following

procedure. Initially let X := N (the set of all sensors). We

repeat following procedure as long as possible.

• t← min
{

u ∈ {1, 2, . . . , T} :
∑

s∈X p(s)u = 1
}

,
• let x be the only sensor broadcasting in time slot t,
• X ← X \ {x}.

In other words t is the first time slot in which only one

sensor x broadcasts. Next we remove x from X . We show

that the set X has at least n − T sensors. Indeed, we can

only remove sensors from X , thus ht =
∑

s∈X p(s)t for any

t is non-increasing. So we can only once change ht from

1 to 0. Thus we can remove at most T sensors and for the

final set X , it holds that |X| ≥ n− T.
We can prove using simple induction that if the set of

activated stations is X (i.e., K = X) then the state of the

channel is exactly the same as in the case of the empty

set (i.e., K = ∅). That is, r(X) = r(∅). If the algorithm

is correct then |X| < λ. Finally, λ > |X| ≥ n − T. and

T > n− λ.

Using a similar approach we show following lemma.

Lemma 2.2: For any deterministic algorithm solving the

λ-Alert problem, we have T ≥ λ
2 .

Proof: Let us consider a deterministic algorithm defined

by the sequence Q1, Q2, . . . , QT if all sensors are activated



(i.e. K = N ). We can construct a set X satisfying the

following conditions:

• ∀Ti=1|X ∩Qi| ≥ min(2, |Qi|),
• |X| < 2T .

It is clear that r(X) = r(N) and all sensors at the end should

be in the state ALERT . This implies 2T ≥ |X| ≥ λ.
Theorem 2.3: In the model without collision detection

any deterministic algorithm has time complexity Ω(n).
Proof: The above theorem follows directly from the

above lemmas. That is, T ≥ n−λ (Lemma 2.1) and 2T ≥ λ
(consequence of Lemma 2.2). This implies 3T ≥ n.

From the above theorem we see that the simplest algo-

rithm is asymptotically optimal.

B. Collision detection

1) Oblivious algorithms: First of all, let us note that for

λ = 2, we can solve the problem in time 1, independently

on the parameter n. If all activated sensors will broadcast in

time slot 1, they are able to distinguish the cases |K| = 0,

|K| = 1 and |K| ≥ 2, and return an alarm only in the

last case (i.e., if a Collision occurs). For other values of λ,

analysis turns to be much more complicated. Fortunately, in

many cases the analysis can be reduced to other results and

techniques used in other problems - in particular in conflict

resolution protocols.

Let us recall some constructions. Let family C =
{c1, c2, . . . , cn} be a set of binary words with fixed length

t. The number of vectors n is the size of code. Given

k words ci1 , ci2 , . . . , cik , we define the sum of vectors

ci1 ∨ ci2 ∨ · · · ∨ cik as bitwise Boolean sum. We say that

binary vector v covers vector w if for each coordinate with

value 1 in w, the corresponding coordinate in v is also 1.

Definition 1: Let r be a positive integer. We say that set

of binary words C = {c1, c2, . . . , cn} is r-superimposed if

for any distinct words ci0 , ci1 , ci2 , . . . , cir , the word ci0 is

not covered by ci1 ∨ ci2 ∨ · · · ∨ cir .

Superimposed codes were introduced by Kautz and Single-

ton in [16]. Now take any λ-superimposed code with length

t. Assign one unique codeword to each sensor. Now if sensor

is activated codeword defines its behaviour (1 – transmit, 0
– listen) during procedure of time t. From the definition,

we can see, that if we have at most λ activated sensors,

then each activated sensor will have unique time slot in

which it will transmit. Thus each superimposed codes is

defining algorithm solving both k-Selection and λ-Alert.

Note, that also each algorithm solving k-Selection defines

some superimposed code (but this does not work necessarily

for λ-Alert). Based on these observations we will want to

prove lower and upper bound on oblivious λ-Alert algorithm.

Below we recall an upper bound on the length of codewords

t, proven in [8].

Theorem 2.4 (see [8, Theorem 3.1]): There exists an r-

superimposed code C with size n, and codeword length t,

such that

t = O(r2 log n).

Using superimposed codes we can solve both k-Selection

([18] [2]), and λ-Alert.

Below we show how to modify the k-Selection protocol

based on superimposed codes in order to get an algorithm

solving the λ-Alert problem.

Lemma 2.5: An algorithm based on λ-superimposed code

with length t and the number of codewords at least n solves

the λ-Alert problem in time t.
Proof: Take any such λ-superimposed code C and as-

sign one codeword to each sensor. Take any sets X,Y ⊂ N ,

such that |X| < λ, and |Y | ≥ λ. Denote by CX , CY

sets of codewords assigned to sensors from set X and Y

respectively. We want to show that r(X) 6= r(Y ). Take any

y ∈ Y \ X . We know that C is a superimposed code, so

codeword cy is not covered by
∨

c∈CX
c. So, there exists

a time slot t0 such that y will broadcast (as long as it is

activated) and no sensor from X is allowed to broadcast. So

r(X) 6= r(Y ).

We can now construct sets

R1 = {r(X) : |X| < λ},

R2 = {r(Y ) : |Y | ≥ λ}.

We have just proven that R1 ∩ R2 = ∅. Finally, a sensor

after the execution of the algorithm can check if r(K) is in

R1 or R2 and return NO ALARM or ALARM, respectively.

So, such an algorithm solves the λ-Alert problem.

Theorem 2.6: There exists an oblivious deterministic al-

gorithm solving the λ-Alert problem in time O(λ2 log n).
Proof: We have proven that an algorithm based on

superimposed codes solves the problem. We need to show

that such codes exists. But constructions of superimposed

codes can be found in literature for example in [2].

Lower bound: In this section we prove a lower bound

on the time complexity of oblivious deterministic algorithms

solving λ-Alert. Since in λ-Alert it is not necessary, that each

activated sensor transmits successfully, it is not necessary,

that algorithm is based on λ- superimposed code (however it

is sufficient). To prove the lower bounds, we need to define

different combinatorial structure which will be necessary

(but not sufficient). Presented proof has nature similar to

lower bounds for k-selection problem. However we need to

introduce a different underlying combinatorial structure that

we call r-double superimposed code.

First, let us define a binary operator ⊕ that works on

elements from set {0, 1, 2} as follows:

⊕ 0 1 2
0 0 1 2
1 1 2 2
2 2 2 2



When we add two vectors using operation ⊕, we simply

use this operator on each position of the summed vectors.

Definition 2: Let r be a positive integer. We say that

a set of binary words C = {c1, c2, . . . , cn} is r-double

superimposed if for any distinct words ci0 , ci1 , ci2 , . . . , cir ,

ci0 ⊕ ci1 ⊕ ci2 ⊕ · · · ⊕ cir 6= ci1 ⊕ ci2 ⊕ · · · ⊕ cir .

It easy to see that any oblivious algorithm solving λ-Alert

is a λ-double superimposed code. Indeed, if we treat 0, 1,

and 2 as the states of the channel when none, one or at

lest two stations transmit, respectively. We want to prove

that a λ-double superimposed code must have length at least

Ω(λ log n). Let us introduce some further definitions.

Definition 3: Family F = {F1, F2, . . . } of subsets of X
is r-double-cover-free if

(∀F0,F1...,Fr∈F∃x∈F0
)

r
∑

i=1

|Fi ∩ {x}| ≤ 1.

First we note that there is a natural correspondence

between λ-double-cover-free families F and λ-double su-

perimposed codes P . For any λ-double-cover-free family we

can define a λ-double superimposed code of length |X|. For

each set Fi ∈ F we define ci as follows. For each x ∈ Fi

we set 1 on x-th position of vector ci, an all other positions

we set 0. Finally, note that the set X represents time slots

of some λ-Alert algorithm. Thus, we denote |X| = t.
First we will prove the lemma for λ-double-cover-free

families with size restriction. Let us denote gλ(t, k) as the

maximum cardinality of a λ-double-cover-free family F ,

where ∀F ∈ F |F | = k.

Lemma 2.7: Let s =
⌈

2k
λ

⌉

. If λ is even, then:

gλ(t, k) ≤ 2

(

t
s

)

(

k−1
s−1

) .

Proof: Below we use ideas of Proposition 2.1 from [8].

We will call a set of cardinality s a small set. First we define

the following family of small sets:

N (F ) = {T ⊂ F : |T | = s, (∃F ′, F ′′ 6= F ;F ′, F ′′ ∈ F)

T ⊂ F ′, T ⊂ F ′′}

which are small subsets of F contained in at least two

other sets from F . Note that for any F ∈ F and any

T1, T2, . . . , Tλ
2
∈ N (F ) we have

∣

∣

∣

∣

∣

∣

λ
2
⋃

i=1

Ti

∣

∣

∣

∣

∣

∣

< k.

Indeed, otherwise F could be doubly covered by λ sets

from other sets from F . This, is however, impossible since

F is a double-cover-free family. Up to now we know that

N (F ) fulfills the following conditions:

• ∀T∈N (F )T ⊂ F, |T | = s;

•
λ
2 s ≥ |F | = k;

•

(

∀T1, T2, . . . , Tλ
2
∈ N (F )

)

T1 ∪ T2 ∪ · · · ∪ Tλ
2
6= F.

Thus, by Lemma 4.2 from [10], we know that

|N (F )| ≤

(

k − 1

s

)

.

Now, consider all small subsets of some F ∈ F . We

proved, that at most
(

k−1
s

)

are contained in two other sets

from F . Thus for any F , we have at least
(

k

s

)

−

(

k − 1

s

)

=

(

k − 1

s− 1

)

,

different small subsets contained in at most one other set

from F . Thus
|F|
(

k−1
s−1

)

2
≤

(

t

s

)

.

Note that a (λ − 1)-double-cover-free family is also λ-

double-cover-free. Thus, gλ(t, k) ≤ gλ−1(t, k). For any (no

necessarily even) λ, we note the following lemma.

Lemma 2.8: Let s =
⌈

2k
λ−1

⌉

. For any λ > 1

gλ(t, k) ≤ 2

(

t
s

)

(

k−1
s−1

) .

Theorem 2.9: If gλ(n) is the maximum cardinality of a

λ-double-cover-free family F ⊂ 2X , then

gλ(t) ≤ 2e
2t

λ−1 .

Proof: One can see that

gλ(t) ≤
t
∑

k=1

gλ(t, k) ≤
t
∑

k=1

2

(

t
s

)

(

k−1
s−1

) .

Indeed, let us consider any λ-double-cover-free family F
and the set of families F1,F2, . . . ,Ft, where Fi = {F ∈
F : |F | = i}. Any family Fi must be λ-double-cover-free,

so |F| =
∑t

k=1 |Fk| ≤
∑t

k=1 gλ(t, k). One can see that

(

k − 1

s− 1

)

=
k − 1

k − s

(

k

s− 1

)

=

(

k
⌈

2k
λ−1

⌉

− 1

)

≥

(

k
2k
λ−1

)s−1

≥
(λ− 1)s−1

2s−1
,

Thus

gλ(t) ≤ 4

t
∑

k=1

ts

s!
(

λ−1
2

)s

1

λ− 1
≤ 4

∞
∑

k=0

ts

s!
(

λ−1
2

)s

1

λ− 1
.

Since s =
⌈

2k
λ−1

⌉

, then we have at most
⌈

λ−1
2

⌉

≤ λ − 1

identical elements in above sum, and

gλ(t) ≤ 4

∞
∑

s=0

ts

s!
(

λ−1
2

)s = 4e
2t

λ−1 .



Now we are ready to prove the main result of this part.

Theorem 2.10: If λ > 2, and n ≥ 3, then for all deter-

ministic oblivious algorithms solving the λ-Alert problem

we have T = Ω(λ log n).
Proof: Since every oblivious deterministic algorithm

solving λ-Alert problem corresponds to a λ-double-cover-

free family we can use the previously obtained bound. Take

any oblivious deterministic algorithm solving λ-Alert. As

we already discussed, we can assign a set of slots to each

sensor representing the slots in which it will transmit in case

of being activated. If an algorithm solves λ-Alert, this set of

slots is a λ-double-cover-free family. Since we have limited

the size of a family for given λ and t, we have n ≤ gλ(t).

From previous lemma we have n ≤ 4e
2t

λ−1 , and finally

t ≥
(λ− 1) log

(

n
4

)

2
.

2) Adaptive algorithms: In this section we show an

adaptive algorithm running in time O(λ log(n
λ
)). Then we

state a lower bound on the running time of the λ-Alert

algorithm adapted from [13].

Algorithm: We identify each sensor with its identifier.

The algorithm works in rounds. Each round has κ =
3
⌊

λ−1
2

⌋

time slots. Initially, each sensor sets local variable

signals := 0. The variable collisions is reset to 0 at the

beginning of each round. A single round works as follows.

• collisions := 0
• Divide set N into κ groups

Ni = {x ∈ N : κ|(x− i)},

where κ|(x− i) means that κ divides (x− i).
• If sensor fulfills all the following conditions

– it belongs to set Ni;

– it is active;

– it has not broadcasted successfully yet;

then the sensor broadcasts in the i-th slot of this round

and listens in the other slots. Let us denote the result

of transmission in the i-th slot by r(i).
• signals := signals + |{i : r(i) = Signal}|,

collisions := |{i : r(i) = Collision}|.
• If λ ≥ signals+ 2collisions then ALARM.

• If collisions = 0 and signals < λ then NO ALARM.

• Else

N ′ =
⋃

r(i)=Collision

Ni.

• If |N ′|+ signals < λ, then NO ALARM.

• Assign new identifiers to sensors from set N ′ (identi-

fiers from set {1, 2, . . . , |N ′|}).
• N := N ′.

The algorithm repeats this procedure until a result

(ALARM or NO ALARM) is obtained. We want to show that

this algorithm is correct and works in time O(λ log(n
λ
)).

First notice that each participant belongs to set N ′. If an

active sensor transmits successfully, it is removed from N ,

but the number of such sensors is counted by each sensor

(i.e., the variable signals is incremented). We want to show

that if the algorithm returns ALARM, then |K| ≥ λ. Note

that

Ni ∩Nj = ∅, for i 6= j.

If ALARM is returned, then since the sets Ni are disjoint,

we have at least 2 · collisions of participants. We also

have exactly signals sensors that have made successful

transmissions. Thus |K| ≥ λ, and the result is correct. Now,

if the result is NO ALARM, then there were less than λ
signals and no Collision, so there are no more participants.

In such a case, result is also correct. We need to show that

the algorithm always finishes its work. We will do this by

bounding the time complexity. Assigning new identifiers is

simple because sensors are aware which Ni sets are removed

from N , and can compute offsets of identifiers. Set N ′

and new identifiers are computed locally by each sensor.

We omit local computations in complexity analysis, because

they are fast compared to time of transmitting and receiving

messages. Below we show a bound on the running time of

the algorithm.

Theorem 2.11: For every input K ⊂ N , and 1 < λ < n,

the algorithm terminates in O(λ log
(

n
λ

)

) time slots.

Proof: The key observation is that if in round i the

result is not returned, then

|N (i+1)| ≤
|N (i)|

3
+

⌊

λ− 1

2

⌋

,

where N (i) denotes variable N
′

in round i. Indeed, because

the result ALARM is not returned, we have at most λ−1
2

Collisions in this round. Since we remove set Ni if Signal

or Silence appears in the i-th slot in round, we have

|Ni| ≤

⌈

N (i)

κ

⌉

≤
|N (i)|

κ
+ 1,

|N (i+1)| ≤

⌊

λ− 1

2

⌋(

|N (i)|

κ
+ 1

)

≤
|N (i)|

3
+

⌊

λ− 1

2

⌋

.

We denote n(i) = |N (i)|. We have already proven that

n(t+1) ≤
n(t)

3
+

⌊

λ− 1

2

⌋

.

One can see that sequence n(1), n(2), n(3), . . . , n(t) is de-

creasing if n(t) > κ. Finally,

n(log3(n
λ )) ≤

n(1)

3log3(n
λ )

+

log3(n
λ )

∑

i=0

⌊

λ−1
2

⌋

3i
≤

n
n
λ

+
λ

2

3

2
≤ 2λ.

This means that if in rounds 1, 2, . . . , log3
(

n
λ

)

there was no

result, then in the next round there are less than 2κ sensors



in set N
′

. Thus, sets Ni will have 1 or 2 sensor each. In

this case the algorithm finishes in the next round. Thus, the

algorithm will always terminate. Its runtime is O(λ log
(

n
λ

)

),
because each round lasts O(λ) slots.

Below we discuss lower bounds on the execution time

of adaptive algorithms solving the λ-Alert problem. All

theorems can be proved using straightforward modifications

of proofs from [13] due to Greenberg and Winograd. The

only trick is to find appropriate “worst case” sets K of

activated stations.

Theorem 2.12 ([13, Theorem 1]): For any n and λ (3 ≤
λ ≤ n), in the worst case at least λ

2 + log(n
λ
) time slots are

needed to solve λ-Alert problem.

Theorem 2.13 ([13, Theorem 2]): For 8 ≤ λ < 2
3n, in

the worst case, at least Ω((λ/ log λ)(log n
λ
)) time is needed

to solve λ-Alert

Combining the two previous theorems gives us the fol-

lowing result.

Theorem 2.14: For any λ > 2, any adaptive deterministic

algorithm needs in the worst case Ω (λ logλ n) time to solve

λ-Alert.

The table below summarizes results for λ-Alert problem

discussed in this section.

Model Deterministic Deterministic
lower bound known algorithm

no-CD Ω(n) O(n)
CD
oblivious

Ω (λ logn) O(λ2 logn)

CD
adaptive

Ω
(

λ
logn

log λ

)

O
(

λ log
(

n

λ

))

Table I
TABLE FOR λ-Alert

III. RANDOMIZED ALGORITHMS

In this section we switch to randomized, adaptive algo-

rithms. In subsection III-B we present the Election Alert

Algorithm (EAA) algorithm that can be regarded as an

extension of Uniform–election from [23]. Subsection III-C

is devoted to a short description of another randomized

protocol called Oracle Algorithm. In both discussed algo-

rithms, a labelling of nodes, very important in deterministic

algorithms, is not required. Both algorithms are of Las Vegas

type. That is, they always return the correct answer, however

the time of execution may differ in different executions.

Although the first algorithm is better in asymptotic sense, in

many cases Oracle Algorithm seem to be more efficient. This

intuition is supported by experimental results given in III-D.

As before, activated sensors that have not transmitted suc-

cessfully yet are called participants.

Since the time of execution of each protocol depends on

many parameters, we recall and set some notation.

Let random variable Tn,λ,K be the runtime of an algo-

rithm for given n, λ,K.

Definition 4: We say, that a randomized algorithm works

in expected time O(f(n, λ)), if

∃c,n0,λ0∀n > n0∀λ>λ0∀K⊂NE (Tn,λ,K) < cf(n, λ).

Definition 5: A randomized algorithm works in time

O(f(n, λ)) with probability at least p, if

∃c,n0,λ0∀n > n0∀λ>λ0∀K⊂N Pr (Tn,λ,K < cf(n, λ)) ≥ 1−p.

A. Common sub-procedures

Below we describe some auxiliary procedures used later.

Test procedure: The first common procedure is called

test. It takes a single time slot. It works as follows:

Function test(c)

1 Each currently activated sensor transmits with

probability 1
c
. Silence, Signal or Collision is returned

depending on the number of sensors which transmit.

Deactivation: Activated sensor that have made success-

ful transmission (we assume that sensor which is making a

successful transmission is aware of this) can deactivate and

behave from this moment as an inactive one. They are just

notified of the algorithm’s result at the end.

Signals counting: Each activated sensor counts the

number of Signals, and returns ALARM if the counter

reaches λ. When Signal appears, the following procedure

is executed.

Procedure incrementObserved

1 signalsObserved← signalsObserved+ 1
2 if signalsObserved ≥ λ then

3 ALARM

4 end

Control slots: Another idea implemented in all our al-

gorithms in this section are control slots. The value returned

by test(1) can tell us if all activated sensors have already

broadcast. Note that for k < λ, a Las Vegas algorithm can

end only in a control slot.

Below we also recall a theorem that we use in the analysis.

Theorem 3.1 (see [22, Theorem 4.4]): Let X1, . . . , Xn

be independent Poisson trials such that Pr(Xi = 1) = pi.
Let X =

∑n
i=1 Xi and µ = E [X]. Then the following

Chernoff bounds hold:



Procedure controlSlot

1 result←test(1)
2 if result← Silence then

3 NO ALARM

4 else if result← Signal then

5 incrementObserved

6 controlSlot

7 end

1) for any δ > 0,

Pr (X ≥ (1 + δ)µ) ≤

(

eδ

(1 + δ)1+δ

)µ

; (1)

2) for 0 < δ ≤ 1,

Pr (X ≥ (1 + δ)µ) ≤ e
−µδ2

3 ; (2)

3) for R ≥ 6µ,

Pr (X ≥ R) ≤ 2−R. (3)

B. Election Alert Algorithm (EAA)

Below we present Election Alert Algorithm (EAA) based

on a leader election protocol called Uniform-election, de-

scribed by Nakano and Olariu in [23]. Our protocol works

in the same way as Uniform-election, however it does not

stop after one Signal, but will continue until λ Signals

appear, or there are no more participants left (to detect

such a case, we use control slots). The EAA is uniform

- i.e. each node executes the same algorithm. Execution of

the protocol depends on parameter f ≥ 1. Election Alert

Algorithm works as follows. The pseudocode of EEA is

similar to Uniform-election, but its analysis is different. In

particular, we need to take into account that more than one

Signal is expected. To solve the λ-Alert problem with this

procedure, each activated sensor must count the number of

Signals, and stop the procedure when the counter reaches

λ. We also use here control slots described in subsection

III-A. Inactive sensors are notified about the result using

the procedure result broadcast also defined in III-A. Let

f ≥ 1 be arbitrary, and s = ⌈log log(4kf)⌉. The first lemma

bounds the time complexity of Phases 1 and 2. We did not

modify Phases 1 and 2, thus proofs of next two lemmas are

exactly the same as in [23].

Lemma 3.2 (Nakano, Olariu, see [23, Lemma 3.1]):

With probability exceeding 1 − 1
4f , Phase 1 and Phase 2

combined take at most 2 log log n+O(log log f) time slots.

The second lemma proves the correctness of u after phase

2. The proof of this lemma can be found in [23].

Lemma 3.3 (Nakano, Olariu, see [23, Lemma 3.2]):

With probability exceeding 1 − 1
2f , when Phase

2 terminates, u satisfies the double inequality
k

ln(4(s+1)f) ≤ 2u ≤ 4(s+ 1)fk.

Algorithm 2: Election Alert Algorithm

1 Phase 1:

2 signalsObserved← 0
3 i← 1
4 repeat

5 i← i+ 1

6 result← test (22
i

)

7 if result = Signal then

8 incrementObserved

9 controlSlot

10 end

11 until result = Silence;

12 Phase 2:

13 l← 1
14 u← 2i

15 while l + 1 < u do

16 m←
⌈

l+u
2

⌉

17 result ← test(2m)
18 if result = Signal then

19 incrementObserved

20 controlSlot

21 end

22 if result = Silence then

23 u← m
24 else

25 l← m
26 end

27 end

28 Phase 3:

29 while true do

30 result ← test(2u)
31 if result = Silence then

32 u← max{u− 1, 1}
33 else if result = Collision then

34 u← u+ 1
35 else if result = Signal then

36 incrementObserved

37 controlSlot

38 end

39 end

Lemma 3.4: Protocol Election Alert Algorithm termi-

nates with probability at least 1− 1
f

, in at most 2 log log n+
o(log log n) +O(log f) +O(λ) time slots.

Proof: This proof is a modification of the proof of

lemma 3.3, from [23]. The main difference is that we expect

multiple Signals, thus the number of participants (which is

estimated by 2u) changes in time. Let us denote k(i) as the

number of participants in the i-th step of execution. We can

also define v(i) as an integer, such that:

2v
(i)−1 < k(i) ≤ 2v

(i)

.



Of course, k(0) = k, and v(0) = ⌈log k⌉. We say that

test(2u) performed in Phase 3 fails to decrease if u ≥
v(i) + 2 and the result of Test is Collision. If the result

is Silence, we say that it succeeds to decrease. When

u ≤ v(i) − 2, and the status of the channel is Collision,

than this call fails to increase, when status is Silence, than

this call succeeds to increase the estimate.

The call test(2u) is good if v(i) − 2 ≤ u ≤ v(i) + 2.

Note, that in this case the probability of Signal is:

(

k(i)

1

)

1

2u

(

1−
1

2u

)k(i)−1

>
k(i)

2u
e−

k(i)

2u

> min

{

2u+2

2u
e−

2u+2

2u ,
2u−3

2u
e−

2u−3

2u

}

> min

{

4

e4
,

1

8e
1
4

}

=
4

e4
.

We note that probability is bounded by a constant inde-

pendent of u. Thus, if we have at least e4

4 (λ+ ln(4f))
good slots, we can compute the probability of at least

λ successes. More precisely, we have at most min{k, λ}
Poisson trials. Each has expected value at most e4

4 . Let X
denote the sum of all successes. Using Chernoff bound for

R = 3e4

2 (λ+ ln(4f)) we get:

Pr(X > R) ≤ 2−R < 2−min{λ,k} 1

4f
≤

1

4f
.

Note that R = 6 e4

4 (min{k, λ}+ ln(4f)) > min{k, λ} +
log(4f).

Finally, if we have during the whole execution at least
3e4

2 (λ+ ln(4f)) good slots, than we are certain that λ-Alert

problem will be solved with probability at least 1 − 1
4f .

Now we want to show that good calls occur quite frequently

in Phase 3. First we will bound the probability that a

call Test(2u) fails. Let Z denote the number of sensors

transmitting in a particular time slot. Clearly, E[Z] = k(i)

2u .

So, if u ≥ v(i)+2, than the call Test(2u) fails fo decrease

with probability at most:

Pr[Z > 1] = Pr

[

Z >
2u

k(i)
E[Z]

]

< Pr

[

Z >
2u

2v(i)
E[Z]

]

(from k(i) ≤ 2v
(i)

)

< Pr [Z > 4E[Z]] (from u ≥ v(i) + 2)

<
1

4.
(by Markov’s inequality)

On the other hand, if u ≤ v(i) − 2, then the probability that

Test(2u) fails to increase is at most:

Pr[Z = 0] =

(

1−
1

2u

)k(i)

< e−
k(i)

2u

< e−
2v

(i)
−1

2u (from 2v
(i)−1 < k(i))

< e−2 (from u ≤ v(i) − 2)

<
1

4
.

Finally, the call Test(2u) fails with probability

at most 1
4 . Now, suppose that we execute

test(2u) 8
3e

4 (ln(4f) + log log log k + λ) times in

Phase 3. Let Ns,Nf ,Ng be the number of times

Test(2u), succeeds, fails, and is good among these
8
3e

4 (ln(4f) + log log log k + λ) calls, respectively. Clearly:

Ns +Nf +Ng =
8

3
e4 (ln(4f) + log log log k + λ) .

If at the end of Phase 2, u satisfies the double inequality of

Lemma 3.3, we have:

u ≥ log

(

k

4(s+ 1)f

)

> log k − log(s+ 1)− log log f − 2

> v(0) − log log f − log log log k − log log log f − 4

and similarly

u ≤ log(k(ln(4(s+ 1)f)))

< log k + log ln(s+ 1) + log ln f + 2

< v(0) + log log f + log log log log k + log log log log f + 3.

Thus we have,
∣

∣

∣
u− v(0)

∣

∣

∣
< 2 log log f + log log log k + 4.

If equation 4 holds at the end of Phase 2, we have

Ns < Nf + 2 log log f + log log log k + 2 + log λ. (4)

Since a particular call Test(2u) falls with probability at

most 1
4 , we have:

E[Nf ] ≤
2e4

3
(ln(4f) + log log log k + λ) .

Now using Chernoff bound we can limit the probability that

Nf will exceed e4 (ln(4f) + log log log n+ λ) .

Pr[Nf > e4 (ln(4f) + log log log k + λ)] <

< Pr

[

Nf >

(

1 +
1

2

)

E[Nf ]

]

< e−
1

223
E[Nf ]

< e
e4

24 (ln(4f)+log log log k+λ)

<
1

4f
.



Suppose that Nf < e4 (ln(4f) + log log log k + λ) is sat-

isfied. We have already proven that this happens with

probability at least 1− 1
4f . Then, we have:

Ng =
8

3
e4 (ln(4f) + log log log n+ λ)− (Ns +Nf )

≥
8

3
e4 (ln(4f) + log log log n+ λ)

−2Nf − (2 log log f + log log log k + 2 + log λ)

>
e4

4
(ln(4f) + λ) .

So, with probability at least 1 − 1
4f , among

8
3e

4 (ln(4f) + log log log k + λ) calls Test(2u), there

are at least e4

4 (ln(4f) + λ) good ones. But then with

probability at least 1
4f we succeed in finishing algorithm.

So, if at the end of Phase 2, u satisfies the double inequality

in Lemma 3.3, then with probability 1 − 1
2f , Phase 3

terminates in at most 8
3e

4 (ln(4f) + log log log k + λ)
time slots. By Lemma 3.2, with probability at least
1
2f , the combined time of Phases 1 and 2 is at most

2 log log k +O(log log f). Finally, with probability at least

(

1−
1

2f

)(

1−
1

4f

)2

> 1−
1

f
,

the algorithm terminates in time 2 log log n+ o(log log n)+
O(log f) +O(λ).
Now we can formulate the final results of this subsection.

Theorem 3.5: There exists a uniform randomized algo-

rithm solving λ-Alert without knowledge of n, with proba-

bility exceeding 1− 1
f

, in time O(log log n+ λ+ log f).
Proof: The time complexity follows directly from the

previous lemma. We need to prove its correctness. But since

we will terminate only when at least λ Signals appear,

or there are no participants, we cannot return the wrong

result. We can see in the pseudocode that u > 0 during

whole algorithm. Thus, if the number of participants is

positive, then in each time slot the probability of successful

transmission is positive. If there are no participants, we will

end in the next control slot. Thus, Election Alert Algorithm

always solves λ-Alert.

C. Oracle Algorithm

In this section we introduce another approach to the

construction of λ-Alert that we call Oracle Algorithm. The

idea is as follows. Each round consists of two phases. In the

first phase we run a very precise size approximation protocol

(“oracle“) that gives us an approximation with constant

factor of accuracy w.h.p. The second phase lasts until a

fixed number of signals appears. Each signal is followed

by a control slot. Consecutive rounds are repeated until the

total number of signals is equal to λ or there are no other

participants. The last condition can be detected in the control

slot procedure.

We have proposed an implementation of the above idea

using HyperLogLog algorithm ([9]). Of course, it had to

be modified to work in an ad hoc single-hop network.

HyperLogLog works in time O(log log n) and returns a

very precise approximation of the number of activated

sensors. We can prove that having an oracle returning an

approximation of the number of participants allows us to

construct a λ-Alert algorithm working in time O(λ). Then

we applied HyperLogLog as an oracle and we obtained an

algorithm working in time O(log n log log n log λ+λ) with

probability

• at least 1−
(

2−λ + 1
n3

)

, if n is large enough, but n <
M ,

• at least 1 −
(

2−λ + 1
M3

)

, if n is large enough, and

n ≥M ,

where M = 210
7

. We skip the analysis and details of

description due to space limitations. This algorithm seems

to be much worse than for example EAA described before

(exponential difference !). However, in practice it may be

very useful and extremely fast in some particular cases as

shown in the next subsection.

D. Experiments

We have made tests comparing Election and Oracle Algo-

rithm. Tests were done for n = 10000, k = 1000,m = 16.

We have done 50 tests for each value of λ from 10 to 1000,

divisible by 10. The first plot shows the execution time of

each test using EAA algorithm.
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The next chart shows the runtime of the Oracle Algorithm.

We can see that the algorithm worked for the longest time

in the case when k was close to λ. This happened because

in this case the number of executions of the HyperLogLog

subroutine was the largest.
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Finally, we compare both algorithms. We can see that the

Oracle Algorithm works faster in the case when k ≫ λ,

or k ≪ λ. But the variance of its runtime is bigger when

compared to the Election Alert Algorithm. On the other

hand, EAA works much faster in the case when k ≈ λ.

IV. CONCLUSIONS

In this paper we discussed the λ-Alert algorithm. Al-

though we have shown results for many of the most natural

settings, several important questions are left unanswered.

In particular, it is not clear how to design energy-efficient

protocols that solve the λ-Alert problem. In analysis, we

always discussed the worst–case scenario. It seems that the

proposed algorithms are very far from optimal if we have

some knowledge about K (i.e., the set of activated nodes),

for example, if we know distribution of K. Such a model

can be very natural, in particular, if nodes are activated

independently with the same (possibly unknown) probability.
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