P. Angelini, G. D. Battista, M. Kaufmann, T. Mchedlidze, V. Roselli et al., Small Point Sets for Simply-Nested Planar Graphs, Proc. 19th Int. Symp. Graph Drawing, pp.75-8510, 2012.
DOI : 10.1016/0022-0000(89)90032-9

URL : http://dspace.lib.ntua.gr/handle/123456789/36538

M. J. Bannister, Z. Cheng, W. E. Devanny, and D. Eppstein, Superpatterns and Universal Point Sets, Journal of Graph Algorithms and Applications, vol.18, issue.2, pp.177-209, 2014.
DOI : 10.7155/jgaa.00318

URL : http://arxiv.org/abs/1308.0403

M. A. Bekos, M. Kaufmann, S. G. Kobourov, and A. Symvonis, Smooth Orthogonal Layouts, Journal of Graph Algorithms and Applications, vol.17, issue.5, pp.575-595, 2013.
DOI : 10.7155/jgaa.00305

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. A. Bekos and C. N. Raftopoulou, Circle-Representations of Simple 4-Regular Planar Graphs, Proc. 20th Int. Symp. Graph Drawing (GD'12), pp.138-149
DOI : 10.1007/978-3-642-36763-2_13

J. Cardinal, M. Hoffmann, and V. Kusters, On universal point sets for planar graphs, Proc. Thailand? Japan Joint Conf. Comput. Geom. Graphs (TJJCCGG'12), pp.30-4110, 2013.

M. Chrobak and H. J. Karloff, A lower bound on the size of universal sets for planar graphs, ACM SIGACT News, vol.20, issue.4, pp.83-86, 1989.
DOI : 10.1145/74074.74088

H. De-fraysseix, J. Pach, and R. Pollack, How to draw a planar graph on a grid, Combinatorica, vol.13, issue.1, pp.41-5110, 1990.
DOI : 10.1007/BF02122694

E. D. Demaine, J. S. Mitchell, and J. O-'rourke, The open problems project. Website, 2001.

G. , D. Battista, P. Eades, R. Tamassia, and I. G. Tollis, Algorithms for drawing graphs: An annotated bibliography, Comput. Geom. Theory Appl, vol.4, issue.94, pp.235-28210, 1994.

E. , D. Giacomo, W. Didimo, G. Liotta, and S. Wismath, Curve-constrained drawings of planar graphs, Comput. Geom. Theory Appl, vol.30, pp.1-23, 2005.

D. Dolev, T. Leighton, and H. Trickey, Planar embedding of planar graphs, Advances in Computing Research, pp.147-161, 1984.

V. Dujmovic, W. S. Evans, S. Lazard, W. Lenhart, G. Liotta et al., On Point-Sets That Support Planar Graphs, Comput. Geom. Theory Appl, vol.11, issue.2, pp.29-50, 2013.
DOI : 10.1137/0211023

URL : https://hal.archives-ouvertes.fr/hal-00643824

D. Eppstein, Planar Lombardi Drawings for Subcubic Graphs, Proc. 20th Int. Symp. Graph Drawing (GD'12), pp.126-137, 2013.
DOI : 10.1007/978-3-642-36763-2_12

URL : http://arxiv.org/abs/1206.6142

H. Everett, S. Lazard, G. Liotta, and S. Wismath, Universal Sets of n Points for One-bend Drawings of??Planar Graphs with n Vertices, Discrete & Computational Geometry, vol.17, issue.2, pp.272-28810, 2010.
DOI : 10.1007/s00454-009-9149-3

URL : https://hal.archives-ouvertes.fr/inria-00431769

R. Fulek and C. Tóth, Universal point sets for planar three-trees, Proc. 13th Algorithms Data Struct. Symp. (WADS'13), pp.341-352

E. R. Gansner, S. C. North, and K. Vo, DAG???a program that draws directed graphs, Software: Practice and Experience, vol.21, issue.11, pp.1047-1062, 1988.
DOI : 10.1002/spe.4380181104

F. Giordano, G. Liotta, T. Mchedlidze, and A. Symvonis, Computing upward topological book embeddings of upward planar digraphs, Proc. Int. Symp. Algorithms Comput. (ISAAC'07), pp.172-183, 2007.

M. Kurowski, A 1.235 lower bound on the number of points needed to draw all n-vertex planar graphs, Information Processing Letters, vol.92, issue.2, pp.95-98, 2004.
DOI : 10.1016/j.ipl.2004.06.009

URL : https://hal.archives-ouvertes.fr/hal-00550171

P. Rosenstiehl and R. E. Tarjan, Rectilinear planar layouts and bipolar orientations of planar graphs, Discrete & Computational Geometry, vol.13, issue.4, pp.343-35310, 1986.
DOI : 10.1007/BF02187706

URL : https://hal.archives-ouvertes.fr/hal-00259777

W. Schnyder, Embedding planar graphs on the grid Discrete Algorithms (SODA'90), Proc. 1st ACM- SIAM Symp, pp.138-148, 1990.

W. T. Tutte, How to Draw a Graph, Proc. London Math. Soc, pp.743-768, 1963.
DOI : 10.1112/plms/s3-13.1.743