How to Assess Step-Size Adaptation Mechanisms in Randomised Search
Abstract
Step-size adaptation for randomised search algorithms like evolution strategies is a crucial feature for their performance. The adaptation must, depending on the situation, sustain a large diversity or entertain fast convergence to the desired optimum. The assessment of step-size adaptation mechanisms is therefore non-trivial and often done in too restricted scenarios, possibly only on the sphere function. This paper introduces a (minimal) methodology combined with a practical procedure to conduct a more thorough assessment of the overall population diversity of a randomised search algorithm in different scenarios. We illustrate the methodology on evolution strategies with $\sigma$-self-adaptation, cumulative step-size adaptation and two-point adaptation. For the latter, we introduce a variant that abstains from additional samples by constructing two particular individuals within the given population to decide on the step-size change. We find that results on the sphere function alone can be rather misleading to assess mechanisms to control overall population diversity. We observed the most striking flaws for self-adaptation: on the linear function, the step-size increments are rather small, and on a moderately conditioned ellipsoid function, the adapted step-size is 20 times smaller than optimal.
Fichier principal
ppsn2014assess.pdf (1.23 Mo)
Télécharger le fichier
PPSN-2014-Poster.pdf (1.79 Mo)
Télécharger le fichier
Origin : Files produced by the author(s)
Origin : Files produced by the author(s)