H. [. Barth and . Fournier, A degree bound on decomposable trees, Discrete Mathematics, vol.306, issue.5, 2006.
DOI : 10.1016/j.disc.2006.01.006

URL : https://hal.archives-ouvertes.fr/hal-00141015

]. R. Die05 and . Diestel, Graph Theory : 3rd Edition, Graduate Texts in Mathematics, vol.173, 2005.

G. [. Fulkerson and . Dantzig, Computation of maximal flows in networks, Naval Research Logistics Quarterly, vol.2, issue.4, pp.277-283, 1955.
DOI : 10.1002/nav.3800020407

]. E. Gy?78 and . Gy?ri, On division of graphs to connected subgraphs, pp.485-494, 1978.

M. Shin-ichi-nakano, T. Saidur-rahman, and . Nishizeki, A linear-time algorithm for four-partitioning four-connected planar graphs, Information Processing Letters, vol.62, issue.6, pp.315-322, 1997.
DOI : 10.1016/S0020-0190(97)00083-5

L. Lovász, A homology theory for spanning tress of a graph, Acta Mathematica Academiae Scientiarum Hungaricae, vol.30, issue.3-4, pp.241-251, 1977.
DOI : 10.1007/BF01896190

J. Ma and S. Ma, AnO(k 2n2) algorithm to find ak-partition in ak-connected graph, Journal of Computer Science and Technology, vol.7, issue.5, pp.86-91, 1994.
DOI : 10.1007/BF02939489

H. Nagamochi and T. Ibaraki, A linear-time algorithm for finding a sparsek-connected spanning subgraph of ak-connected graph, Algorithmica, vol.9, issue.1-6, pp.583-596, 1992.
DOI : 10.1007/BF01758778

H. Suzuki, N. Takahashi, and T. Nishizeki, A linear algorithm for bipartition of biconnected graphs, Information Processing Letters, vol.33, issue.5, pp.227-231, 1990.
DOI : 10.1016/0020-0190(90)90189-5

K. Wada and K. Kawaguchi, Efficient algorithms for tripartitioning triconnected graphs and 3-edge-connected graphs, Theoretic Concepts in Computer Science, pp.132-143, 1994.
DOI : 10.1007/3-540-57899-4_47