A. Alba, E. Arce-santana, and M. Rivera, Optical Flow Estimation with Prior Models Obtained from Phase Correlation, ISVC, 2010.
DOI : 10.1007/978-3-642-17289-2_40

N. Apostoloff and A. Fitzgibbon, Learning spatiotemporal Tjunctions for occlusion detection, CVPR, 2005.

P. Arias, G. Facciolo, V. Caselles, and G. Sapiro, A Variational Framework for Exemplar-Based Image Inpainting, International Journal of Computer Vision, vol.29, issue.3, pp.319-347, 2011.
DOI : 10.1007/s11263-010-0418-7

A. Ayvaci, M. Raptis, and S. Soatto, Sparse Occlusion Detection with Optical Flow, International Journal of Computer Vision, vol.31, issue.5, pp.322-338, 2012.
DOI : 10.1007/s11263-011-0490-7

S. Baker, D. Scharstein, S. Lewis, M. J. Roth, R. Black et al., A Database and Evaluation Methodology for Optical Flow, International Journal of Computer Vision, vol.27, issue.3, pp.1-31, 2011.
DOI : 10.1007/s11263-010-0390-2

L. Bao, Q. Yang, and H. Jin, Fast edge-preserving PatchMatch for large displacement optical flow, CVPR

C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Goldman, PatchMatch: A randomized correspondence algorithm for structural image, SIGGRAPH, 2009.

J. Barron, D. Fleet, and S. Beauchemin, Performance of optical flow techniques, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.43-77, 1994.
DOI : 10.1109/CVPR.1992.223269

B. Berkels, C. Kondermann, C. Garbe, and M. Rumpf, Reconstructing Optical Flow Fields by Motion Inpainting, In EMMCVPR, vol.20, issue.1-2, 2009.
DOI : 10.1007/s11263-006-0635-2

M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, Image inpainting, Proceedings of the 27th annual conference on Computer graphics and interactive techniques , SIGGRAPH '00, 2000.
DOI : 10.1145/344779.344972

URL : https://hal.archives-ouvertes.fr/hal-00522652

M. J. Black and P. Anandan, A framework for the robust estimation of optical flow, 1993 (4th) International Conference on Computer Vision, 1993.
DOI : 10.1109/ICCV.1993.378214

M. J. Black and P. Anandan, The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields, Computer Vision and Image Understanding, vol.63, issue.1, pp.75-104, 1996.
DOI : 10.1006/cviu.1996.0006

M. J. Black and A. D. Jepson, Estimating optical flow in segmented images using variable-order parametric models with local deformations, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.18, issue.10, pp.972-986, 1996.
DOI : 10.1109/34.541407

M. J. Black and D. J. , Fleet Probabilistic detection and tracking of motion boundaries, International Journal of Computer Vision, vol.38, issue.3, pp.231-245, 2000.
DOI : 10.1023/A:1008195307933

A. Blake and A. , Zisserman Visual reconstruction, 1987.

M. Bleyer, C. Rhemann, and M. Gelautz, Segmentation-Based Motion with Occlusions Using Graph-Cut Optimization, In DAGM, 2006.
DOI : 10.1007/11861898_47

A. Bobick and S. Intille, Large occlusion stereo, International Journal of Computer Vision, vol.33, issue.3, pp.181-200, 1999.
DOI : 10.1023/A:1008150329890

Y. Boykov, O. Veksler, and R. Zabih, Fast approximate energy minimization via graph cuts, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.23, issue.11, pp.1222-1239, 2001.
DOI : 10.1109/34.969114

J. Braux-zin, R. Dupont, and A. Bartoli, A General Dense Image Matching Framework Combining Direct and Feature-Based Costs, 2013 IEEE International Conference on Computer Vision, 2013.
DOI : 10.1109/ICCV.2013.30

T. Brox, A. Bruhn, N. Papenberg, and J. Weickert, High Accuracy Optical Flow Estimation Based on a Theory for Warping, ECCV, 2004.
DOI : 10.1007/978-3-540-24673-2_3

T. Brox and J. Malik, Large Displacement Optical Flow: Descriptor Matching in Variational Motion Estimation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.33, issue.3, pp.500-513, 2011.
DOI : 10.1109/TPAMI.2010.143

A. Bugeau, M. Bertalmío, V. Caselles, and G. Sapiro, A Comprehensive Framework for Image Inpainting, IEEE Transactions on Image Processing, vol.19, issue.10, pp.2634-2645, 2010.
DOI : 10.1109/TIP.2010.2049240

URL : https://hal.archives-ouvertes.fr/hal-00522652

D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black, A Naturalistic Open Source Movie for Optical Flow Evaluation, ECCV, 2012.
DOI : 10.1007/978-3-642-33783-3_44

T. Chan, S. H. Kang, and J. H. Shen, Euler's elastica and curvature based inpaintings, SIAM Journal on Applied Mathematics, vol.63, issue.2, pp.564-592, 2002.

T. Chan, S. Osher, and J. H. Shen, The digital TV filter and nonlinear denoising, IEEE Transactions on Image Processing, vol.10, issue.2, pp.231-241, 2001.
DOI : 10.1109/83.902288

L. Chen, H. Jin, Z. Lin, S. Coben, and Y. Wu, Large Displacement Optical Flow from Nearest Neighbor Fields, 2013 IEEE Conference on Computer Vision and Pattern Recognition, 2013.
DOI : 10.1109/CVPR.2013.316

D. Cremers and S. Soatto, Motion Competition: A Variational Approach to Piecewise Parametric Motion Segmentation, International Journal of Computer Vision, vol.18, issue.9, pp.246-265, 2005.
DOI : 10.1007/s11263-005-4882-4

A. Criminisi, P. Pérez, and K. Tomaya, Region Filling and Object Removal by Exemplar-Based Image Inpainting, IEEE Transactions on Image Processing, vol.13, issue.9, pp.1200-1212, 2004.
DOI : 10.1109/TIP.2004.833105

G. Facciolo, N. Limare, and E. Meinhardt, Integral images for block matching. IPOL, 2013.

P. F. Felzenszwalb and D. P. Huttenlocher, Efficient belief propagation for early vision, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004., pp.41-54, 2006.
DOI : 10.1109/CVPR.2004.1315041

D. Fortun and C. Kervrann, Semi-local variational optical flow estimation, 2012 19th IEEE International Conference on Image Processing, 2012.
DOI : 10.1109/ICIP.2012.6466799

URL : https://hal.archives-ouvertes.fr/hal-00763806

D. Fortun, P. Bouthemy, P. Paul-gilloteaux, and C. Kervrann, Aggregation of patch-based estimations for illuminationinvariant optical flow in live cell imaging, ISBI, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00931377

D. Fortun, P. Bouthemy, and C. Kervrann, Optical flow modeling and computation: A survey, Computer Vision and Image Understanding, vol.134, pp.1-21, 2015.
DOI : 10.1016/j.cviu.2015.02.008

URL : https://hal.archives-ouvertes.fr/hal-01104081

W. T. Freeman and E. C. Pasztor, Learning low-level vision, Proceedings of the Seventh IEEE International Conference on Computer Vision, 1999.
DOI : 10.1109/ICCV.1999.790414

A. Geiger, P. Lenz, and R. Urtasun, Are we ready for autonomous driving? The KITTI vision benchmark suite, 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012.
DOI : 10.1109/CVPR.2012.6248074

M. Gelgon and P. Bouthemy, A region-level motion-based graph representation and labeling for tracking a spatial image partition, Pattern Recognition, vol.33, issue.4, pp.725-740, 2000.
DOI : 10.1016/S0031-3203(99)00083-7

URL : https://hal.archives-ouvertes.fr/hal-00442736

D. Hafner, O. Demetz, and J. Weickert, Why Is the Census Transform Good for Robust Optic Flow Computation?, SSVM, Leibnitz, Austria, 2013.
DOI : 10.1007/978-3-642-38267-3_18

F. Heitz and P. Bouthemy, Multimodal estimation of discontinuous optical flow using Markov random fields, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.15, issue.12, pp.1217-1232, 1993.
DOI : 10.1109/34.250841

URL : https://hal.archives-ouvertes.fr/inria-00075193

B. K. Horn and B. G. Schunck, Determining optical flow, Artificial Intelligence, vol.17, issue.1-3, pp.185-203, 1981.
DOI : 10.1016/0004-3702(81)90024-2

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.185.1651

M. Horná?ek, F. Besse, J. Kautz, A. Fitzgibbon, and C. Rother, Highly Overparameterized Optical Flow Using PatchMatch Belief Propagation, ECCV, Zurich, 2014.
DOI : 10.1007/978-3-319-10578-9_15

S. Huq, A. Koschan, and M. Abidi, Occlusion filling in stereo: Theory and experiments, Computer Vision and Image Understanding, vol.117, issue.6, pp.688-704, 2013.
DOI : 10.1016/j.cviu.2013.01.008

A. Humayun, O. M. Aodha, and G. J. Brostow, Learning to find occlusion regions, CVPR 2011, 2011.
DOI : 10.1109/CVPR.2011.5995517

S. Ince and J. Konrad, Occlusion-Aware Optical Flow Estimation, IEEE Transactions on Image Processing, vol.17, issue.8, pp.1443-1451, 2008.
DOI : 10.1109/TIP.2008.925381

K. Jia, X. Wang, and X. Tang, Optical flow estimation using learned sparse model, 2011 International Conference on Computer Vision, 2011.
DOI : 10.1109/ICCV.2011.6126522

P. M. Jodoin and M. Mignotte, Optical-flow based on an edgeavoidance procedure Computer Vision and Image Understanding Optical flow with geometric occlusion estimation and fusion of multiple frames, EMMCVPR, Hong-Kong, pp.511-531, 2009.

C. Kervrann, J. Boulanger, T. Pécot, P. Pérez, and J. Salamero, Multiscale NeighborhoodWise Decision Fusion for Redundancy Detection in Image Pairs, Multiscale Modeling & Simulation, vol.9, issue.4, pp.1829-1865, 2011.
DOI : 10.1137/100791786

URL : https://hal.archives-ouvertes.fr/inria-00487051

T. H. Kim, H. Lee, and K. M. Lee, Optical Flow via Locally Adaptive Fusion of Complementary Data Costs, 2013 IEEE International Conference on Computer Vision, 2013.
DOI : 10.1109/ICCV.2013.415

V. Kolmogorov, Convergent Tree-Reweighted Message Passing for Energy Minimization, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.28, issue.10, pp.1568-1583, 2006.
DOI : 10.1109/TPAMI.2006.200

N. Komodakis and G. Tziritas, Image Completion Using Efficient Belief Propagation Via Priority Scheduling and Dynamic Pruning, IEEE Transactions on Image Processing, vol.16, issue.11, pp.2649-2661, 2007.
DOI : 10.1109/TIP.2007.906269

C. Kondermann, D. Kondermann, and C. Garbe, Postprocessing of Optical Flows Via Surface Measures and Motion Inpainting, 30th DAGM Symposium on Pattern Recognition, 2008.
DOI : 10.1007/978-3-540-69321-5_36

V. Lempitsky, S. Roth, and C. Rother, FusionFlow: Discrete-continuous optimization for optical flow estimation, 2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008.
DOI : 10.1109/CVPR.2008.4587751

M. Leordeanu, A. Zanfir, and C. Sminchisescu, Locally Affine Sparse-to-Dense Matching for Motion and Occlusion Estimation, 2013 IEEE International Conference on Computer Vision, 2013.
DOI : 10.1109/ICCV.2013.216

B. D. Lucas and T. Kanade, An iterative image registration technique with an application to stereo vision, IJCAI, 1981.

E. Mémin and P. Pérez, Dense estimation and object-based segmentation of the optical flow with robust techniques, IEEE Transactions on Image Processing, vol.7, issue.5, pp.703-719, 1998.
DOI : 10.1109/83.668027

A. Mitiche and P. Bouthemy, Computation and analysis of image motion: A synopsis of current problems and methods, International Journal of Computer Vision, vol.7, issue.4, pp.29-55, 1996.
DOI : 10.1007/BF00131147

M. Mohamed, H. Rashwan, B. Mertsching, M. Garcia, and D. Puig, Illumination-Robust Optical Flow Using a Local Directional Pattern, IEEE Transactions on Circuits and Systems for Video Technology, vol.24, issue.9, pp.1499-1508, 2014.
DOI : 10.1109/TCSVT.2014.2308628

M. G. Mozerov, Constrained Optical Flow Estimation as a Matching Problem, IEEE Transactions on Image Processing, vol.22, issue.5, pp.2044-2055, 2013.
DOI : 10.1109/TIP.2013.2244221

C. Nieuwenhuis, D. Kondermann, and C. S. Garbe, Complex Motion Models for Simple Optical Flow Estimation, DAGM Symp. on Pattern Recognition, 2010.
DOI : 10.1007/978-3-642-15986-2_15

C. Nieuwenhuis, E. Toeppe, and D. Cremers, A Survey and Comparison of Discrete and Continuous Multi-label Optimization Approaches for the Potts Model, International Journal of Computer Vision, vol.3, issue.4, pp.223-240, 2013.
DOI : 10.1007/s11263-013-0619-y

J. M. Odobez and P. Bouthemy, Robust Multiresolution Estimation of Parametric Motion Models, Journal of Visual Communication and Image Representation, vol.6, issue.4, pp.348-365, 1995.
DOI : 10.1006/jvci.1995.1029

J. M. Odobez and P. Bouthemy, Direct incremental model-based image motion segmentation for video analysis, Signal Processing, vol.66, issue.2, pp.143-155, 1998.
DOI : 10.1016/S0165-1684(98)00003-6

N. Papadakis, R. Yildizoglu, J. F. Aujol, and V. Caselles, High-Dimension Multilabel Problems: Convex or Nonconvex Relaxation?, SIAM Journal on Imaging Sciences, vol.6, issue.4, pp.2603-2639, 2013.
DOI : 10.1137/120900307

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.422.4251

F. Pierre, J. F. Aujol, A. Bugeau, N. Papadakis, and V. T. Ta, Luminance-Chrominance Model for Image Colorization, SIAM Journal on Imaging Sciences, vol.8, issue.1, pp.536-563, 2015.
DOI : 10.1137/140979368

URL : https://hal.archives-ouvertes.fr/hal-01166919

R. Ranftl, K. Bredies, and T. Pock, Non-local Total Generalized Variation for Optical Flow Estimation, ECCV, 2014.
DOI : 10.1007/978-3-319-10590-1_29

J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid, EpicFlow: Edge-preserving interpolation of correspondences for optical flow, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
DOI : 10.1109/CVPR.2015.7298720

URL : https://hal.archives-ouvertes.fr/hal-01142656

D. Rosenbaum, D. Zoran, and Y. Weiss, Learning the local statistics of optical flow, NIPS, Lake Tahoe, 2013.

S. Roth and M. J. Black, Fields of Experts, International Journal of Computer Vision, vol.27, issue.2, pp.205-234, 2009.
DOI : 10.1007/s11263-008-0197-6

C. Rother, V. Kolmogorov, V. Lempitsky, and M. Szummer, Optimizing Binary MRFs via Extended Roof Duality, 2007 IEEE Conference on Computer Vision and Pattern Recognition, 2007.
DOI : 10.1109/CVPR.2007.383203

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.63.4613

T. Senst, V. Eiselen, and T. Sikora, Robust Local Optical Flow for Feature Tracking, IEEE Transactions on Circuits and Systems for Video Technology, vol.22, issue.9, pp.1377-1387, 2012.
DOI : 10.1109/TCSVT.2012.2202070

A. N. Stein and M. Hebert, Occlusion Boundaries from Motion: Low-Level Detection and??Mid-Level Reasoning, International Journal of Computer Vision, vol.14, issue.7, pp.325-357, 2009.
DOI : 10.1007/s11263-008-0203-z

J. Sun, Y. Li, K. Sin, H. Kang, and . Shum, Symmetric stereo matching for occlusion handling, CVPR, 2005.

D. Sun, E. Sudderth, and M. Black, Layered segmentation and optical flow estimation over time, CVPR, 2012.

D. Sun, C. Liu, and H. Pfister, Local Layering for Joint Motion Estimation and Occlusion Detection, 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014.
DOI : 10.1109/CVPR.2014.144

D. Sun, S. Roth, and M. Black, A Quantitative Analysis of Current Practices in Optical Flow Estimation and the Principles Behind Them, International Journal of Computer Vision, vol.28, issue.4, pp.115-137, 2014.
DOI : 10.1007/s11263-013-0644-x

Y. Tian and S. G. Narasimhan, Globally Optimal Estimation of Nonrigid Image Distortion, International Journal of Computer Vision, vol.29, issue.11, pp.278-302, 2012.
DOI : 10.1007/s11263-011-0509-0

R. Timofte and L. Van-gool, SparseFlow: Sparse matching for small to large displacement optical flow, WACV, Lake Placid, 2015.

Z. Tu, C. Van-gemeren, and R. C. Veltkamp, Improved Color Patch Similarity Measure Based Weighted Median Filter, ACCV, 2014.
DOI : 10.1007/978-3-319-16814-2_27

M. Unger, M. Werlberger, T. Pock, and H. Bischof, Joint motion estimation and segmentation of complex scenes with label costs and occlusion modeling, 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012.
DOI : 10.1109/CVPR.2012.6247887

J. Ulén and C. Olsson, Simultaneous Fusion Moves for 3D-Label Stereo, In EMMCVPR, 2013.
DOI : 10.1007/978-3-642-40395-8_7

A. Wedel, T. Pock, C. Zach, and H. , Bischof and D. Cremers An improved algorithm for TV-L1 optical flow, Dagstuhl Visual Motion Analysis Workshop, 2008.

P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid, DeepFlow: Large Displacement Optical Flow with Deep Matching, 2013 IEEE International Conference on Computer Vision, 2013.
DOI : 10.1109/ICCV.2013.175

URL : https://hal.archives-ouvertes.fr/hal-00873592

M. Werlberger, T. Pock, and H. Bischof, Motion estimation with non-local total variation regularization, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010.
DOI : 10.1109/CVPR.2010.5539945

J. Wulff and M. J. Black, Efficient sparse-to-dense optical flow estimation using a learned basis and layers, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
DOI : 10.1109/CVPR.2015.7298607

J. Xiao, H. Cheng, H. Sawhney, C. Rao, and M. Isnardi, Bilateral Filtering-Based Optical Flow Estimation with Occlusion Detection, ECCV, 2006.
DOI : 10.1007/11744023_17

L. Xu, J. Chen, J. Jia, L. Xu, J. Jia et al., A segmentation-based variational model for accurate optical flow estimation Motion detail preserving optical flow estimation, ECCV, pp.1744-1757, 2008.

L. Xu, Z. Dai, and D. Jia, Scale Invariant Optical Flow, ECCV, 2012.
DOI : 10.1007/978-3-642-33709-3_28

J. Yang and H. Li, Dense, accurate optical flow estimation with piecewise parametric model, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
DOI : 10.1109/CVPR.2015.7298704

H. Zimmer, A. Bruhn, and J. Weickert, Optic Flow in Harmony, International Journal of Computer Vision, vol.28, issue.4, pp.368-388, 2011.
DOI : 10.1007/s11263-011-0422-6

C. W. Zitnick, N. Jojic, and S. B. Sin, Consistent segmentation for optical flow estimation, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1, 2005.
DOI : 10.1109/ICCV.2005.61

Q. Zhang, L. Xu, and J. Jia, 100+ Times Faster Weighted Median Filter (WMF), 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014.
DOI : 10.1109/CVPR.2014.362

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.643.7837