F. J. Bonnans, P. Martinon, and &. V. Grélard, Bocop -A collection of examples, pp.2012-8053
URL : https://hal.archives-ouvertes.fr/hal-00726992

B. Bonnard, J. Caillau, and &. E. Trélat, Second order optimality conditions in the smooth case and applications in optimal control, ESAIM: Control, Optimisation and Calculus of Variations, vol.13, issue.2, pp.207-236, 2007.
DOI : 10.1051/cocv:2007012

URL : https://hal.archives-ouvertes.fr/hal-00086380

B. Bonnard, J. Caillau, and &. E. Trélat, Geometric optimal control of elliptic Keplerian orbits, Discrete Contin, Dyn. Syst. Ser. B, vol.5, issue.4, pp.929-956, 2005.

B. Bonnard and &. M. Chyba, Singular trajectories and their role in control theory, of Mathematics & Applications, p.357, 2003.

B. Bonnard, M. Chyba, A. Jacquemard, and &. J. Marriott, Algebraic geometric classification of the singular flow in the contrast imaging problem in nuclear magnetic resonance, Mathematical Control and Related Fields, vol.3, issue.4, pp.397-432, 2013.
DOI : 10.3934/mcrf.2013.3.397

URL : https://hal.archives-ouvertes.fr/hal-00939495

B. Bonnard, M. Chyba, and &. J. Marriott, Singular Trajectories and the Contrast Imaging Problem in Nuclear Magnetic Resonance, SIAM Journal on Control and Optimization, vol.51, issue.2, pp.1325-1349, 2013.
DOI : 10.1137/110833427

URL : https://hal.archives-ouvertes.fr/hal-00939496

B. Bonnard, M. Claeys, O. Cots, and &. P. Martinon, Geometric and numerical methods in the contrast imaging problem in nuclear magnetic resonance, Acta Appl. Math, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00867753

B. Bonnard and &. O. Cots, GEOMETRIC NUMERICAL METHODS AND RESULTS IN THE CONTRAST IMAGING PROBLEM IN NUCLEAR MAGNETIC RESONANCE, Mathematical Models and Methods in Applied Sciences, vol.24, issue.01, pp.187-212, 2014.
DOI : 10.1142/S0218202513500504

B. Bonnard, O. Cots, S. Glaser, M. Lapert, D. Sugny et al., Geometric Optimal Control of the Contrast Imaging Problem in Nuclear Magnetic Resonance, IEEE Transactions on Automatic Control, vol.57, issue.8, pp.1957-1969, 2012.
DOI : 10.1109/TAC.2012.2195859

URL : https://hal.archives-ouvertes.fr/hal-00750032

J. Caillau and &. B. Daoud, Minimum Time Control of the Restricted Three-Body Problem, SIAM Journal on Control and Optimization, vol.50, issue.6, pp.3178-3202, 2011.
DOI : 10.1137/110847299

URL : https://hal.archives-ouvertes.fr/hal-00599216

Y. Chitour, F. Jean, and &. E. Trélat, Genericity results for singular curves, Journal of Differential Geometry, vol.73, issue.1, pp.45-73, 2006.
DOI : 10.4310/jdg/1146680512

URL : https://hal.archives-ouvertes.fr/hal-00086357

O. Cots, Contrôle optimal géométrique : méthodes homotopiques et applications, 2012.

D. Henrion, J. B. Lasserre, and &. J. Löfberg, GloptiPoly 3: moments, optimization and semidefinite programming, Optimization Methods and Software, vol.24, issue.4-5, pp.4-5, 2009.
DOI : 10.1080/10556780802699201

URL : https://hal.archives-ouvertes.fr/hal-00172442

J. Li and &. N. Khaneja, Control of inhomogeneous quantum ensembles, Physical Review A, vol.73, issue.3, p.30302, 2006.
DOI : 10.1103/PhysRevA.73.030302

N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-herbruggen, and &. S. Glaser, Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms, Journal of Magnetic Resonance, vol.172, issue.2, pp.296-305, 2005.
DOI : 10.1016/j.jmr.2004.11.004

I. Kupka, Geometric theory of extremals in optimal control problems. i. the fold and Maxwell case, Trans. Amer. Math. Soc, vol.299, issue.1, pp.225-243, 1987.

M. Lapert, Y. Zhang, S. J. Glaser, and &. Sugny, Towards the time-optimal control of dissipative spin-1/2 particles in nuclear magnetic resonance, Journal of Physics B: Atomic, Molecular and Optical Physics, vol.44, issue.15, p.44, 2011.
DOI : 10.1088/0953-4075/44/15/154014

URL : https://hal.archives-ouvertes.fr/hal-00642391

M. Lapert, Y. Zhang, M. Janich, S. J. Glaser, and &. D. Sugny, Exploring the physical limits of saturation contrast in Magnetic Resonance Imaging Sci, p.589, 2012.

J. B. Lasserre, D. Henrion, C. Prieur, and &. E. Trélat, Nonlinear Optimal Control via Occupation Measures and LMI-Relaxations, SIAM Journal on Control and Optimization, vol.47, issue.4, pp.1643-1666, 2008.
DOI : 10.1137/070685051

URL : https://hal.archives-ouvertes.fr/hal-00136032

M. H. Levitt, Spin dynamics: basics of nuclear magnetic resonance, 2001.

J. Li, Control of inhomogeneous ensembles, Phd dissertation, 2006.

L. S. Pontryagin, V. G. Boltyanski?-i, R. V. Gamkrelidze, and &. E. Mishchenko, Matematicheskaya teoriya optimalnykh protsessov, 1983.