
HAL Id: hal-01002419
https://hal.inria.fr/hal-01002419

Submitted on 6 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FFS Factory: Adapting Coppersmith’s ”Factorization
Factory” to the Function Field Sieve

Jérémie Detrey

To cite this version:
Jérémie Detrey. FFS Factory: Adapting Coppersmith’s ”Factorization Factory” to the Function Field
Sieve. 2014. <hal-01002419>

https://hal.inria.fr/hal-01002419
https://hal.archives-ouvertes.fr


FFS Factory:

Adapting Coppersmith’s “Factorization Factory”

to the Function Field Sieve

Jérémie Detrey

CARAMEL project-team, LORIA, INRIA / CNRS / Université de Lorraine,
Campus Scientifique, BP 239, 54506 Vandœuvre-lès-Nancy Cedex, France

Jeremie.Detrey@loria.fr

Abstract. In 1993, Coppersmith introduced the “factorization factory”
approach as a means to speed up the Number Field Sieve algorithm
(NFS) when factoring batches of integers of similar size: at the expense
of a large precomputation whose cost is amortized when considering suf-
ficiently many integers to factor, the complexity of each individual fac-
torization can then be lowered.

We suggest here to extend this idea to the computation of discrete log-
arithms in finite fields of small characteristic using the Function Field
Sieve (FFS), thus referring to this approach as the “FFS factory”. In this
paper, the benefits of the proposed technique are established thanks to
both a theoretical complexity analysis along with a practical experiment
in which we solved the discrete logarithm problem in fifty different binary
fields of sizes ranging from 601 to 699 bits.

Keywords: Discrete logarithm, Function field sieve, Cryptanalysis

1 Introduction

Initially introduced in 1994 by Adleman [2], the Function Field Sieve (FFS) has
been for almost twenty years the most efficient algorithm known for computing
discrete logarithms in the multiplicative subgroup of finite fields Fqk , with a sub-

exponential asymptotic complexity of Lqk(1/3,
3

√

32/9)1+o(1), where the notation
Lqk designates the usual function

LN (α, c) = exp
(

c(logN)α(log logN)1−α
)

, with 0 ≤ α ≤ 1 and c > 0.

However, the year 2013 was marked by several successive major theoreti-
cal improvements on this algorithm by Göloğlu et al. [14], Joux [23], and fi-
nally Barbulescu et al. [8], which eventually brought the asymptotic complex-
ity of solving the discrete logarithm problem over fields of small characteris-
tic down to quasi-polynomial time. These breakthroughs were accompanied by
many computations of discrete logarithms in record-sized binary and ternary

Jeremie.Detrey@loria.fr


2 J. Detrey

fields [20,14,21,15,22,16,1]. Nevertheless, finding the exact crossing point be-
tween FFS and these recent algorithms, especially when it comes to fields of
prime extension degrees, is still an active research topic [5].

Furthermore, software implementations of FFS (or at least of the descent
step) are now publicly available, either as standalone software packages such as
in the cado-nfs distribution [4], or as part of computer algebra systems such as
Magma [10]. Therefore, providing such software with the precomputed discrete
logarithms of factor bases for various finite fields should definitely make their
job easier when computing individual logarithms in these fields. For instance,
the release notes of Magma V2.20 state that “The database of logarithms is

continually being extended and now includes data for larger fields. In particular,

the fields GF(2d) are now covered for all prime degree d ≤ 509 and most degrees

up to 500” [9].

Bearing in mind this motivation of computing discrete logarithms in several
finite fields, we propose in this paper the so-called “FFS factory”, whose key
idea is to share as much of the computation as possible amongst the considered
finite fields in order to decrease the overall computation cost when compared to
running as many independent instances of FFS.

This approach is directly inspired from Coppersmith’s “factorization fac-
tory” [12], which can be used to accelerate the factorization of many integers
of the same size using the Number Field Sieve (NFS), thus bringing the origi-
nal complexity of NFS from LN (1/3, 1.923)1+o(1) down to LN (1/3, 1.639)1+o(1)

for each integer N to be factored. A similar modification of NFS, known as
the “discrete logarithm factory”, was later presented by Barbulescu in order to
batch discrete logarithm computations over finite fields of large characteristic [6,
Section 7.2].

However, since both of the above cases are based on NFS, they can only
share the computations on the so-called rational side of the algorithm. What we
propose here is to leverage the fact that the polynomial selection is far less con-
strained in the FFS setting in order to share the computations on the algebraic

side instead. It is to be noted that this idea was first suggested by Kleinjung
in the context of factoring using the Special Number Field Sieve (SNFS) [24],
which is in many ways quite similar to FFS.

Roadmap. This paper is organized as follows. After a presentation on the
Function Field Sieve in Section 2, with a special emphasis on its complexity
analysis, Section 3 details the algorithmic and complexity aspects of the proposed
FFS factory approach before discussing its applicability. A practical experiment,
involving the computation of discrete logarithms in 50 binary finite fields of size
between 601 and 699 bits, is then presented in Section 4, before some concluding
remarks in Section 5.



FFS Factory 3

2 Remainder on the Function Field Sieve

In the following, we let q be a prime power and k a positive integer, and assume
that we want to compute discrete logarithms in the multiplicative subgroup of
the finite field Fqk . In other words, for any two elements g and h ∈ F

×

qk
, with g

primitive, we want to find the integer λ ∈ Z/(qk − 1)Z such that h = gλ.
Note that, in order to fall into the domain of applicability of FFS, we further

require that q = Lqk(α, c) with 0 ≤ α < 1/3 and c > 0. In practice, q will usually
be a small prime (such as 2) or a small power thereof.

As the Function Field Sieve belongs to the family of index calculus algorithms
for computing discrete logarithms, it follows the same basic three steps:

– The relation collection step, whose goal is to find many multiplicative equal-
ities, or relations, involving only elements from a predefined subset of Fqk ,
called the factor base. Taking the logarithm, each such relation becomes a
linear equation modulo qk − 1, whose unknowns are the discrete logarithms
of the factor base elements.

– The linear algebra step, which solves the linear system once enough such
relations have been found, and therefore recovers the value of the discrete
logarithms of the factor base elements.

– The individual logarithm step, which computes the discrete logarithm of an
arbitrary element h ∈ F

×

qk
by finding a multiplicative relation involving only

h and factor base elements.

Further details on how these three tasks are achieved in FFS are given in the
following paragraphs, before a careful complexity analysis in Section 2.4. How-
ever, we do not claim here to give an exhaustive nor comprehensive description
of FFS, but rather to focus on a few key points which will prove useful in the
rest of this paper. For more information on this topic, we refer the interested
reader to the original theoretical foundations of FFS by Adleman and Adleman
& Huang [2,3] along with the later improvements by Matsumoto and Joux &
Lercier [26,19].

2.1 Relation collection

Let d > 1 be an integer, and let f(x, t) ∈ Fq[t][x] be a monic, bivariate polynomial
of degree d in x. Note that, for our purposes, the degree in t of f can be made
as small as possible1. Let now g(x, t) ∈ Fq[t][x] be a linear polynomial such
that its resultant in x with f has an irreducible factor ϕ(t) of degree k. Since, by
construction, f has coefficients of small degree in t, this implies that degt g ≈ k/d.

In the following, we denote by F (X,Y, t) = Y d · f(X/Y, t) and G(X,Y, t) =
Y · g(X/Y, t) the homogenizations in x of the polynomials f and g, respectively.

Given the above choice of polynomials, the target finite field Fqk is there-
fore isomorphic to the extension field Fq[t]/(ϕ(t)), and the following diagram is
commutative:
1 Selecting good polynomials for FFS is a non-trivial task, but it does not fall into the

scope of this paper. For more details about this point, please refer to [7].



4 J. Detrey

Fq[t][x]

Fq[t][x]/(f(x, t)) Fq[t][x]/(g(x, t))

Fq[t]/(ϕ(t)) ∼= Fqk

The core idea behind the relation collection step in FFS, also known as the
sieving step, is to consider elements of Fq[t][x] and to map them down to Fqk

through both sides of the diagram, factoring the corresponding principal ideals in
the ring of integers of the function fields Fq(t)[x]/(f(x, t)) and Fq(t)[x]/(g(x, t))
along the way.

In this sieving step, we then consider all the pairs of polynomials (r(t), s(t)) ∈
(Fq[t])

2 where r is monic and both are of degree at most e, where e is a param-
eter called the sieving bound. Given a second parameter b, referred to as the
smoothness bound, we then push each polynomial r(t)− s(t)x ∈ Fq[t][x] through
the above diagram, and try to factor the corresponding principal ideals in the
ring of integers of the function fields Fq(t)[x]/(f(x, t)) and Fq(t)[x]/(g(x, t)) as
products of prime ideals whose norms are of degree at most b. If such a fac-
torization succeeds on both sides, then the pair (r, s) is called doubly-b-smooth.
Mapping both factorizations to Fqk thanks to the two lower maps of the diagram
then yields a relation, that is a multiplicative equality between elements of the
factor base, which is defined as the set of those elements of Fqk that correspond
to prime ideals whose norms have degree at most b in the function fields above.

On the left-hand side of the diagram (also known as the algebraic side), the
principal ideal corresponding to an element r(t) − s(t)x factors as a product of
prime ideals whose norms have degree at most b in the ring of integers of the
function field Fq(t)[x]/(f(x, t)) if and only if the norm of this principal ideal itself
factors as a product of irreducible polynomials of degree at most b. The same
obviously holds for the right-hand side as well (also known as the rational side).
Therefore, checking if a pair (r, s) from the sieving domain if doubly-b-smooth
is tantamount to checking if the norms of the corresponding principal ideals,
namely the polynomials F (r, s, t) and G(r, s, t) ∈ Fq[t], both factor as products
of irreducible polynomials of degree at most b.

Therefore, collecting relations in FFS is just a matter of enumerating all pairs
(r, s) in the sieving domain, computing their norms F (r, s, t) and G(r, s, t), and
marking each of them as a valid relation if both norms are indeed b-smooth. Of
course, the parameters d, e and b should be carefully chosen so that this step
finds enough relations in order to solve the corresponding linear system.

2.2 Linear algebra

All the relations collected in the previous step form a large linear system modulo
qk − 1, the order of the multiplicative subgroup of Fqk . However, this linear
system is very sparse, thus allowing for efficient methods such as Lanczos’ or



FFS Factory 5

Wiedemann’s algorithms [25]: given a sparse matrix of N rows and columns,
with an average of ω non-zero coefficients per row, such algorithms can indeed
solve the corresponding linear system in time O(ωN2), which is more efficient
than classical Gaussian elimination algorithms running in O(N3).

2.3 Individual logarithms

Let h be an arbitrary element of F×

qk
. Since Fqk

∼= Fq[t]/(ϕ(t)), h can be seen as
a polynomial in t of degree less than k. The discrete logarithm of h then can be
computed in two main steps:

– The smoothing step, in which one tries to find an element of the factor base,
whose norm we denote as θ(t), along with an exponent m such that the
polynomial θ(t)mh(t) mod ϕ(t) is b0-smooth, with b0 =

√
kb.

– The special-q descent : given a prime ideal q (on either the algebraic or the
rational side of the diagram) whose norm is of degree dq, with b < dq ≤ b0,
we denote by Λq the set of (r, s) pairs in (Fq[t])

2 such that the principal ideal
corresponding to r(t)−s(t)x (on the same side of the diagram) is divisible by
q. It can be remarked that Λq forms an Fq[t]-lattice of dimension 2. A basis
of Λq is then obtained thanks to Gaussian lattice reduction, which yields
two vectors (r1(t), s1(t)) and (r2(t), s2(t)), the degree of whose coefficients
r1, s1, r2 and s2 is approximately dq/2.
Similarly to the sieving phase, we fix a parameter e′ and enumerate all pairs
of polynomials (i(t), j(t)) ∈ (Fq[t])

2 where i is monic and both are of degree
at most e′. For each such pair, we then consider the element (ir1+ jr2, is1+
js2) ∈ Λq and try to factor the corresponding norms F (ir1+jr2, is1+js2, t)
and G(ir1+ jr2, is1+ js2, t) as products of irreducible polynomials of degree
at most b′, with the smoothness bound b′ = λdq and the descent parameter

λ < 1. One such doubly-b′-smooth pair will then give us a linear relation
between the discrete logarithm of q and that of several prime ideals whose
norms have degree at most b′.
We finally iterate the process recursively until we end up considering only
prime ideals whose norms have degree at most b, that is, elements of the
factor base, whose discrete logarithms were already computed in the linear
algebra step.

2.4 Complexity analysis

In order to lay the groundwork for the study of the proposed FFS factory al-
gorithm in Section 3.2, we recall here the complexity analysis of the Function
Field Sieve presented in the previous subsections, following the notations of Bar-
bulescu [6, Section 7.5], which are also that of Coppersmith [12] in the case of
the Number Field Sieve.

To that intent, let us first introduce the positive constants δ, ε, and β so as
to define the degree d of f(x, t), the sieving bound e, and the smoothness bound



6 J. Detrey

b as follows:

d = δ

(

k log q

log k

)1/3

, e = ε
k1/3(log k)2/3

(log q)2/3
, and b = β

k1/3(log k)2/3

(log q)2/3
.

Sieving and linear algebra. Given a pair (r, s) of polynomials in the sieving
range (i.e., both of degree at most e and r monic), we then denote by Pf and
Pg the probabilities that the corresponding norms F (r, s, t) and G(r, s, t) are
b-smooth, respectively. The degrees of these norms can be bounded by

degF (r, s, t) ≤ degt f + de ≈ de = δεk2/3(log k)1/3

(log q)1/3

(since f has small coefficients) and

degG(r, s, t) ≤ degt g + e ≈ k/d = 1
δ
k2/3(log k)1/3

(log q)1/3

(since degt g ≈ k/d dominates e).

Assuming that these norms behave like random polynomials of the same degree,
following [27], we then estimate the probabilities that they are b-smooth as

Pf = u−u(1+o(1)) where u = degF (r,s,t)
b ≈ de/b = δε

β

(

k log q
log k

)1/3

and

Pg = v−v(1+o(1)) where v = degG(r,s,t)
b ≈ k/db = 1

δβ

(

k log q
log k

)1/3

,

which we rewrite as Pf = Lqk(1/3,
δε
3β )

−1+o(1) and Pg = Lqk(1/3,
1

3δβ )
−1+o(1).

Since the sieving domain comprises q2e+1 = Lqk(1/3, 2ε)
1+o(1) such pairs

(r, s), the expected total number of relations collected by the sieving step is
therefore q2e+1PfPg. However, in order to be able to solve the corresponding
linear system, we require at least as many relations as there are elements in the
factor base, whose cardinality is less than 2qb = Lqk(1/3, β)

1+o(1). Consequently,
we impose that

q2e+1PfPg ≥ (2qb)1+o(1) or, equivalently, that 2ε−
δε

3β
−

1

3δβ
= β.

Solving in ε, and additionally requiring that δ < 6β, we finally obtain the fol-
lowing constraint on the sieving bound:

ε ≥
3δβ2 + 1

δ(6β − δ)
. (1)

Furthermore, since the degrees of the norms F (r, s, t) and G(r, s, t) are poly-
nomial in log(qk), checking if they are b-smooth can be done in polynomial time,
and the number of non-zero coefficients in the corresponding row of the matrix
in the linear algebra step will also be polynomial in log(qk). Therefore, as FFS
falls into the Lqk(1/3, ·) sub-exponential complexity range, we can ignore these
polynomial terms and obtain the following time complexities:

Tsieving = (q2e+1)1+o(1) = Lqk(1/3, 2ε)
1+o(1) and

Tlin.algebra = (2qb)2+o(1) = Lqk(1/3, 2β)
1+o(1).



FFS Factory 7

These two steps being the most expensive ones in FFS, balancing their com-
putational cost is key to minimize the overall complexity of the algorithm. We
therefore impose the further constraint that e = b or, equivalently, that ε = β.
Under that condition, (1) can be rewritten as a quadratic inequation in δ, namely
εδ2 − 3ε2δ + 1 ≤ 0, which admits a positive solution δ if and only if ε ≥ 3

√

4/9.

Consequently, setting the constants ε = β = 3

√

4/9, we obtain δ = 3

√

3/2
and, finally, the overall complexity of FFS as

TFFS = Lqk(1/3, 2ε)
1+o(1) = Lqk(1/3,

3

√

32/9)1+o(1).

Individual logarithms. We follow here the reasoning of [6, Section 7.3] and
adapt it to the FFS setting. It can be shown that the most expensive step in the
computation of individual logarithms is the special-q descent when the degree
dq of the norm of the prime ideal q is closest to b. In order to evaluate the
complexity of this step, we consider here an ideal q whose norm has degree dq
of the form

dq = γ
k1/3(log k)2/3

(log q)2/3
, with γ > β.

Recall that, in that case, we consider the norms corresponding to pairs of
polynomials of the form (ir1 + jr2, is1 + js2) ∈ Λq ⊂ (Fq[t])

2, with the polyno-
mials i and j of degree at most e′, i monic, and where the coefficients r1, r2,
s1, and s2 of the basis vectors all have degree around dq/2. The degrees of these
norms can therefore be bounded by

degF (ir1 + jr2, is1 + js2, t) . degt f + d(e′ + dq/2) ≈ d(e′ + dq/2) and
degG(ir1 + jr2, is1 + js2, t) . degt g + (e′ + dq/2) ≈ k/d.

Denoting by ε′ the positive parameter such that e′ = ε′ k
1/3(log k)2/3

(log q)2/3
, the prob-

abilities that these two norms are b′-smooth, for b′ = λdq, are then given

by P ′

f = Lqk(1/3,
δε′

3λγ + δ
6λ )

−1+o(1) and P ′

g = Lqk(1/3,
1

3δλγ )
−1+o(1), respec-

tively. Furthermore, since there is no point in taking a smoothness bound b′ for
the descent lower than the sieving smoothness bound b, we can assume that
b′ = λdq ≥ b, whence λγ ≥ β.

Consequently, the overall probability to find one doubly-b′-smooth relation
in this descent step when considering all (i, j) pairs can be bounded by

q2e
′+1P ′

fP
′

g ≥ Lqk

(

1/3, 2ε′ −
δε′

3β
−

δ

6λ
−

1

3δβ

)1+o(1)

.

Since we require this probability to be non-negligible so that at least one such
relation can actually be found, we end up with the following condition on ε′:

ε′ ≥
δ2β/(2λ) + 1

δ(6β − δ)
. (2)



8 J. Detrey

Plugging in the values for β and δ found previously and, following [6], taking
for λ a constant close but not equal to 1, such as 0.999, allows us to choose
ε′ = 3

√

1/18. The cost for this special-q descent step is then

(q2e
′+1)1+o(1) = Lqk(1/3, 2ε

′)1+o(1) = Lqk(1/3,
3

√

4/9)1+o(1).

Finally, considering the tree formed by the recursive calls in the descent
process, one can check that the arity of each node is less than 2k (since special-q
descent will produce less than 2k new prime ideals), while the total depth of the
tree is given by w = logλ(b/b0) = O(log k). Therefore, the total number of nodes
in the tree is in O(exp((log k)2), which is polynomial in log(qk). Consequently,
ignoring the polynomial terms, the overall time complexity for computing an
individual logarithm is the same as the complexity of a single special-q descent
step, namely

Tindiv.log. = Lqk(1/3,
3

√

4/9)1+o(1).

3 The FFS factory

The main contribution of this paper is based on the observation that, in the
Function Field Sieve, a same polynomial f(x, t) ∈ Fq[t][x] can be used to com-
pute discrete logarithms in several finite fields of approximately the same size.
Therefore, in a setting where one wants to compute discrete logarithms in many
different finite fields of close enough sizes, it is possible to use a single polynomial
f for all these fields and share the computations on the algebraic side of the FFS
algorithm.

3.1 Batching FFS computations

Let us now assume that we want to compute discrete logarithms in several finite
fields Fqk′ , with k′ ≤ k and q a prime power such that q = Lqk(α, c) with
0 ≤ α < 1/3 and c > 0.

The idea here is to split the relation collection step into two parts:

– An precomputation step, which is performed only once, and which exclu-
sively focuses on the algebraic (i.e., left-hand) side of the FFS commutative
diagram. In this step, we select a good polynomial f(x, t) ∈ Fq[t][x] of degree
d, and find all pairs (r, s) in the sieving domain which are b-smooth on the
algebraic side. These pairs are then stored into a large file, where they can
be reused later.

– An individual sieving step, which is performed for each target field Fqk′ .
Here, a linear polynomial g(x, t) is first chosen so that its resultant in x
with f has an irreducible factor of degree k′. The previously computed file
is then read, and each pair (r, s) in this file is checked for b-smoothness on
the rational (i.e. right-hand) side.

Once the individual sieving step is completed for a given finite field Fqk′ , the
remaining linear algebra and individual logarithm steps can be performed for
this field just as in the original FFS algorithm.



FFS Factory 9

3.2 Complexity analysis

Since the first part of the relation collection step is now shared between several
discrete logarithm computations, the optimal values for the parameters b, d, and
e will differ from the ones in the original FFS. In order to find these new values,
we build upon the complexity analysis of FFS detailed in Section 2.4.

Relation collection and linear algebra. First of all, one has to remark that,
with respect to the parameters b, d, and e, the degrees of the polynomials f and
g, the sieving domain and the factor base are the same as in the original FFS.
In other words, the sieving domain still comprises q2e+1 = Lqk(1/3, 2ε)

1+o(1)

pairs of polynomials (r, s), the cardinality of the factor base is still less that
2qb = Lqk(1/3, β)

1+o(1), and the degrees of the norms F (r, s, t) and G(r, s, t) are
still bounded by de and k/d, respectively.

Consequently, the condition q2e+1PfPg = (2qb)1+o(1) which ensures that
enough relations are collected in order to solve the corresponding linear system
imposes the exact same constraint on ε:

ε ≥
3δβ2 + 1

δ(6β − δ)
, with δ < 6β. (1)

We now consider the costs of the various steps involved in the FFS factory.
Note however that the actual values of the constants β, δ, and ε will be deter-
mined later.

First of all, as the precomputation step requires to enumerate all pairs (r, s)
of the sieving domain, its complexity is

Tprecomp. = (q2e+1)1+o(1) = Lqk(1/3, 2ε)
1+o(1).

Furthermore, since each pair (r, s) has probability Pf to be b-smooth on the
algebraic side, the number of such b-smooth pairs written to the file in this
precomputation step is then

Nprecomp. = q2e+1Pf = Lqk

(

1/3, 2ε−
δε

3β

)1+o(1)

.

Then, for each target field, we need to perform the corresponding individ-
ual sieving step, which entails going through all the precomputed pair (r, s)
and checking whether each of them is b-smooth on the rational side. Since this
check can be done in polynomial time, the actual complexity of this step is then
Tindiv.sieving = Nprecomp..

The linear algebra step, which also has to be performed for each target field,
still has complexity quadratic in the size of the factor base, as in the original
FFS:

Tlin.algebra = (2qb)2+o(1) = Lqk(1/3, 2β)
1+o(1).

Finally, we denote by Tindiv.FFS = Tindiv.sieving + Tlin.algebra the overall time
complexity of the specific computations required for each target field.



10 J. Detrey

Individual logarithms. In a similar way as for the sieving constraint on ε,
one can easily see that computing a special-q descent step in a target field Fqk′

entails exactly the same constraint on the parameter ε′ of the sieving region as
in the case of the original FFS:

ε′ ≥
δ2β/(2λ) + 1

δ(6β − δ)
. (2)

Furthermore, the cost of an individual logarithm in this field will also be

Tindiv.log. = Lqk(1/3, 2ε
′)1+o(1).

Balancing the complexities. Assuming that the precomputation step is done
once and for all, we only need to balance the cost of the individual sieving
and linear algebra steps for each target field. Setting q2e+1Pf = (2qb)2+o(1) and
using the constraint (1) on ε, we obtain the condition δ ≥ 1/(3β2), which in turn
imposes that β > 3

√

1/18, since (1) also requires that δ < 6β.
In fact, it can be shown that, for any λ < 1, the quantity

ε′ − β ≥
δ2β/(2λ) + 1

δ(6β − δ)
− β ≥

3βδ2 − 12β2δ + 2

2δ(6β − δ)

is always positive when 3

√

1/18 < β < 3

√

1/6. Consequently, if one takes β in
that interval, then the cost of computing an individual logarithm in a target
field Fqk′ will dominate that of the linear algebra step in the same field. The
intuitive explanation is that, in such a case, the factor base is too small and the
descent is thus much harder. It is therefore useless to consider values of β below
3

√

1/6. Similarly, considering values of β larger that 3

√

4/9 is also useless, as such
values will yield complexities larger than that of the original FFS algorithm, thus
defeating the purpose of the FFS factory approach.

In the following, we denote by ε0 the lower bound on ε given by (1):

ε0(β, δ) =
3δβ2 + 1

δ(6β − δ)
.

We first study the behavior of ε0 with respect to δ, in the range 1/(3β2) ≤ δ < 6β,
for a fixed value of 3

√

1/6 < β ≤ 3

√

4/9. Taking the partial derivative of ε0 with
respect to δ then gives

∂ε0
∂δ

(β, δ) =
3β2δ2 + 2δ − 6β

δ2(6β − δ)2
,

which is negative when 1/(3β2) ≤ δ < δ0(β) and positive when δ0(β) < δ <

6β, with δ0(β) = (ξ(β) − 1)/(3β2) and ξ(β) =
√

18β3 + 1. Hence, in order to
minimize ε0, we define ε̃0(β) = ε0(β, δ0(β)). This function and its derivative
with respect to β are then given by

ε̃0(β) = ε0(β, δ0(β)) =

(

3β2

ξ(β)− 1

)2

and
dε̃0
dβ

(β) =
9β3

(

ξ(β)2 − 4ξ(β) + 3
)

ξ(β)(ξ(β)− 1)3
,



FFS Factory 11

respectively. The latter shows that ε̃0 is a strictly decreasing function of β on
the whole interval 3

√

1/6 < β < 3

√

4/9, its derivative vanishing at β = 3

√

4/9.
Similarly, fixing δ = δ0(β) in constraint (2) for individual logarithms gives

the following lower bound on the parameter ε′:

ε′ ≥
β

2ξ(β)

(

1

λ
+

ξ(β) + 1

ξ(β)− 1

)

,

which becomes ε′ ≥ β/(ξ(β)− 1) when λ is chosen to be almost equal to 1.
One can remark that, when taking β = 3

√

4/9, we end up with the exact
same complexity as the original FFS algorithm:

Tprecomp. = Tindiv.FFS = Lqk(1/3,
3

√

32/9)1+o(1) and

Tindiv.log. = Lqk(1/3,
3

√

4/9)1+o(1).

3.3 Discussion

From the previous analysis, taking the parameters ε = ε̃0(β) and ε′ = β/(ξ(β)−
1), one can use β in order to adjust the tradeoff between the cost of the precom-
putation step and that of the individual sieving/linear algebra steps, depending
on how many target fields Fqk′ are considered.

Indeed, if one wants to compute discrete logarithms in many different finite
fields, taking a lower value for β will increase the precomputation time, while
decreasing the individual cost for each target field. This can be seen in Figure 1,
in which the costs Tprecomp., Tindiv.FFS, and Tindiv.log. are given as functions of
β.

0.6

3

√

4/9

1.0

3

√

4/3

1.4

3

√

32/9

3

√

9/2

1.8

0.5 3

√

1/6 0.6 0.7 3

√

4/9 0.8

Parameter β

Time complexity, as the
parameter c of Lqk(1/3, c)

Tindiv.FFS = Lqk(1/3, 2β)
1+o(1)

Tprecomp. = Lqk(1/3, 2ǫ)
1+o(1)

Tindiv.log. = Lqk(1/3, 2ǫ
′)1+o(1)

(original FFS)

Fig. 1. Costs of the various steps in the FFS factory, as functions of β, and expressed
as the parameter c which appears in their complexity when written as Lqk (1/3, c).



12 J. Detrey

Of course, mitigating the extra cost of the precomputation step requires
that enough target fields are considered. In fact, the number N of distinct
finite fields in which to compute discrete logarithms should be of the form
N = Lqk(1/3, ν)

1+o(1), with ν > 0, in order to be able to amortize the pre-

computation cost. For instance, while β = 3

√

4/9 corresponds to the original
FFS algorithm and can therefore be used even for a single target field, on the
other hand, setting β = 3

√

1/6 requires that N ≥ TFFS/Tprecomp. or, in other

words, that ν ≥ 3

√

9/2 − 3

√

32/9 ≈ 0.125. In that case, we have the following
complexity estimates:

Tprecomp. = Lqk(1/3,
3

√

9/2)1+o(1) and

Tindiv.FFS = Tindiv.log = Lqk(1/3,
3

√

4/3)1+o(1).

However, since the finite fields of a given size qk
′

are all isomorphic, and that
this isomorphism is computable in polynomial time, there is absolutely no point
in applying the FFS factory to more than one field of each size. As there are
only a polynomial number of distinct finite fields Fqk′ with k′ ≤ k, there is no
way for N to be in the Lqk(1/3, ·) complexity range as k grows. On first sight,
this renders the whole FFS factory approach useless, at least asymptotically.

However, this criticism might be mitigated as, since 2013, it is known that
FFS, asymptotically speaking, is no longer the most efficient algorithm known
for computing discrete logarithms in finite fields of small characteristic [23,14,8].
Even though the exact crossing point between FFS and these asymptotically
faster algorithms is not known yet, recent experiments show that computing dis-
crete logarithms using FFS still makes sense for finite fields Fqk of size log2(q

k)
up to around 1000 bits [5]. It turns out that, for fields of that size, the quantity
Lqk(1/3, ν) amounts to at most a few dozens when ν ≤ 3

√

9/2− 3

√

32/9. There-
fore, in this case, the number N of finite fields to consider for the FFS factory
to be better than N independent instances of the original FFS is roughly of the
same order of magnitude and is thus totally manageable in practice, as shown
by the experiment presented in Section 4.

4 Practical experiment

In order to assess the applicability and the impact of the proposed FFS factory
approach, we have implemented this algorithm and used it to compute discrete
logarithms in the 50 binary finite fields F2k′ for all odd values of k′ between
601 and 699 (inclusive), which fall slightly below the current size records for
FFS [17,5].

Software implementation. Our implementation of the FFS factory is based
on the C implementation of FFS which is freely available as part of the cado-nfs
software suite [4]. Since some of the steps in the FFS factory are identical to those
of the original FFS, we were able to directly reuse various part of cado-nfs

for our computation, such as the polynomial selection [7], the filtering utilities



FFS Factory 13

(which prepare the matrix before the linear algebra) [11], or the GPU-based
linear algebra implementation [18].

However, the relation collection step had to be modified so as to match the
FFS factory algorithm. In the cado-nfs implementation of FFS, this step is
directly based on the implementation described by Detrey et al. in [13] which,
among other techniques, uses

– special-q sieving, which ensure that large prime ideals q (on either the al-
gebraic or the rational side) appear in the relations, thus increasing the
smoothness probabilities; and

– lattice sieving, which, in a somewhat similar way to the sieve of Eratosthenes,
allows one to quickly find all pairs (r, s) which are divisible by small prime
ideals (on both sides), and to actually check for smoothness only those pairs
which are divisible by sufficiently many of these small prime ideals, since
they will then have higher chances of being b-smooth.

In order for this program to follow the FFS factory approach, we have mod-
ified it to support several polynomials (and therefore several target fields) on
the rational side at the same time, thus sharing the (pre)computations for the
algebraic side amongst all target fields. We have also disabled both the special-q
sieving and the lattice sieving on the rational side, but kept these techniques for
the algebraic side so as to maintain the running time of the precomputation step
as low as possible.

All in all, adding support for the FFS factory mostly entailed minute changes
in the cado-nfs software. It is therefore planned that these changes eventually
make their way into the official code base of cado-nfs, and that the FFS factory
becomes available in future releases.

Experimental setup and results. In order to compute discrete logarithms in
all finite fields F2k′ , with k′ odd and between 601 and 699, using the proposed
FFS factory, we used the same degree-6 polynomial f(x, t) for the algebraic side
that was used for the discrete logarithm computation in F

×

2809 [5]:

f(x, t) = x6 + 0x7x5 + 0x6bx3 + 0x1abx2 + 0x326x+ 0x19b3.

Note that we also considered using a degree-5 polynomial, but none were found
in the polynomial selection step that were as good as the one above for the
considered finite fields.

Sieving was performed using the implementation described above on Intel
Xeon E5-2650 CPUs running at 2.0 GHz. The smoothness bound was fixed to
b = 26, and we lattice-sieved on the algebraic side all prime ideals whose norm
had degree at most 20. We sieved for special-q’s of norm starting at degree 21
and increasing until enough relations were found. As soon as sufficiently many
relations were collected for a given target field, we stopped sieving for this field.
Sieving timings and the number of collected relations for each target field are
reported in Figure 2 (left).



14 J. Detrey

It is to be noted that the precomputation step required 38.2 core-days, and
that the 50 individual sieving steps took a total of 1788.6 core-days. If we had
used the original FFS instead, we estimate that this computation would have
required about 2991.3 core-days to produce a similar set of relations. Therefore,
the FFS factory induced a speedup of 39 % on the overall computation time,
that is, a saving of almost 3.2 core-years on an 8.2-core-year computation.

0

20

40

60

80

100

601 611 621 631 641 651 661 671 681 691
0

10

20

30

40

50

Field extension degree k
′

Sieving time
[core-days] Relations [× 106]

Time with original FFS

Time with FFS factory

Nb. of collected relations

0

2

4

6

8

10

601 611 621 631 641 651 661 671 681 691
0.0

0.4

0.8

1.2

1.6

2.0

Field extension degree k
′

Linear algebra
time [GPU-days] Rows and columns [× 106]

Time for linear algebra

Nb. of rows and columns in matrix

Fig. 2. Timings for the relation collection step on each target field F
qk

′ , for both the
original FFS (estimated) and the FFS factory, along with the number of collected
relations (left). Timings for the linear algebra step on each target field, along with the
number of rows and columns of the corresponding matrix (right).

As mentioned previously, we used Jeljeli’s GPU implementation of the block
Wiedemann algorithm for the linear algebra step [18]. Timings on Nvidia GTX
680 graphics cards, along with the dimension of the corresponding matrices
(whose density was set to an average of 100 non-zero coefficients per row), are
given in Figure 2 (right). This computation represents a total running time of
83.8 GPU-days.

5 Conclusion

In this paper, we have presented an adaptation of Coppersmith’s “factorization
factory” idea to the case of the Function Field Sieve for batching discrete log-
arithm computations in several finite fields of small characteristic. Along with
a careful complexity analysis showing that this approach can be leveraged in
practice to decrease the total computation time when enough target fields are
considered, we also presented a working implementation of this algorithm based
on the FFS implementation of cado-nfs. This implementation was used in a
full-scale experiment in order to validate our analysis, thus solving the discrete
logarithm problem in all the binary finite fields F2k′ of odd extension degree
k′ and of size from 601 to 699 bits. For this experiment, the observed speedup
against the original FFS algorithm was 39 %.



FFS Factory 15

Even though the days of FFS are now numbered, it is far from obsolete yet, es-
pecially for finite fields of (almost) prime extension degrees and of size around or
below 1000 bits. Future works include polishing the FFS factory implementation
so that it can be published as part of the cado-nfs suite and, more importantly,
using this approach to (pre)compute discrete logarithms in as many binary (or
ternary) finite fields as possible so as to complete the database of factor bases in
computer algebra systems such as Magma or Sage. Even though such computa-
tions need to be done only once, they still represent a huge endeavor when large
field sizes are targeted.

References

1. Adj, G., Menezes, A., Oliveira, T., Rodríguez-Henríquez, F.: Computing discrete
logarithms in F36·137 and F36·163 using Magma (2014), Cryptology ePrint Archive,
report 2014/057

2. Adleman, L.M.: The function field sieve. In: Adleman, L.M., Huang, M.D.A. (eds.)
Algorithmic Number Theory – ANTS-I. Lecture Notes in Computer Science, vol.
877, pp. 108–121. Springer–Verlag (1994)

3. Adleman, L.M., Huang, M.D.A.: Function field sieve method for discrete logarithms
over finite fields. Information and Computation 151(1–2), 5–16 (1999)

4. Bai, S., Bouvier, C., Filbois, A., Gaudry, P., Imbert, L., Kruppa, A., Morain, F.,
Thomé, E., Zimmermann, P.: cado-nfs, an implementation of the Number Field
Sieve algorithm, release 2.0, available from http://cado-nfs.gforge.inria.fr/

5. Barbulescu, R., Bouvier, C., Detrey, J., Gaudry, P., Jeljeli, H., Thomé, E., Videau,
M., Zimmermann, P.: Discrete logarithm in GF(2809) with FFS. In: Krawczyk, H.
(ed.) Public-Key Cryptography – PKC 2014. Lecture Notes in Computer Science,
vol. 8383, pp. 221–238. Springer–Verlag (2014)

6. Barbulescu, R.: Algorithms of discrete logarithm in finite fields. Ph.D. thesis,
Université de Lorraine (2013), available at http://tel.archives-ouvertes.fr/

tel-00925228

7. Barbulescu, R.: Selecting polynomials for the Function Field Sieve (2013), preprint,
23 pages, available at http://hal.inria.fr/hal-00798386

8. Barbulescu, R., Gaudry, P., Joux, A., Thomé, E.: A quasi-polynomial algorithm
for discrete logarithm in finite fields of small characteristic. In: Nguyen, P.Q.,
Oswald, E. (eds.) Advances in Cryptology – EUROCRYPT 2014. Lecture Notes in
Computer Science, vol. 8441, pp. 1–16. Springer–Verlag (2014)

9. Bosma, W., Cannon, J.J., Fieker, C., Steel, A.: Summary of new features in Magma
V2.20. Available at http://magma.maths.usyd.edu.au/magma/releasenotes/2/

20/ (Dec 2013)
10. Bosma, W., Cannon, J.J., Playoust, C.: The Magma algebra system. I. The user

language. Journal of Symbolic Computation 24(3-4), 235–265 (1997)
11. Bouvier, C.: The filtering step of discrete logarithm and integer factoriza-

tion algorithms (2013), preprint, 22 pages, available at http://hal.inria.fr/

hal-00734654

12. Coppersmith, D.: Modifications to the Number Field Sieve. Journal of Cryptology
6(3), 169–180 (1993)

13. Detrey, J., Gaudry, P., Videau, M.: Relation collection for the Function Field Sieve.
In: Nannarelli, A., Seidel, P.M., Tang, P.T.P. (eds.) IEEE Symposium on Computer
Arithmetic – ARITH-21. pp. 201–210. IEEE (2013)

http://cado-nfs.gforge.inria.fr/
http://tel.archives-ouvertes.fr/tel-00925228
http://tel.archives-ouvertes.fr/tel-00925228
http://hal.inria.fr/hal-00798386
http://magma.maths.usyd.edu.au/magma/releasenotes/2/20/
http://magma.maths.usyd.edu.au/magma/releasenotes/2/20/
http://hal.inria.fr/hal-00734654
http://hal.inria.fr/hal-00734654


16 J. Detrey

14. Göloğlu, F., Granger, R., McGuire, G., Zumbrägel, J.: On the function field sieve
and the impact of higher splitting probabilities. In: Canetti, R., Garay, J.A. (eds.)
Advances in Cryptology – CRYPTO 2013. Lecture Notes in Computer Science,
vol. 8043, pp. 109–128. Springer–Verlag (2013)

15. Göloğlu, F., Granger, R., McGuire, G., Zumbrägel, J.: Solving a 6120-bit DLP on
a desktop computer. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) Selected Areas
in Cryptography – SAC 2013. Lecture Notes in Computer Science, vol. 8282, pp.
136–152. Springer–Verlag (2014)

16. Granger, R., Kleinjung, T., Zumbrägel, J.: Discrete logarithms in GF(29234). E-
mail to the NMBRTHRY mailing list, http://listserv.nodak.edu/archives/

nmbrthry.html (Jan 2014)
17. Hayashi, T., Shimoyama, T., Shinohara, N., Takagi, T.: Breaking pairing-based

cryptosystems using ηT pairing over GF (397). In: Wang, X., Sako, K. (eds.) Ad-
vances in Cryptology – ASIACRYPT 2012. Lecture Notes in Computer Science,
vol. 7658, pp. 43–60. Springer–Verlag (2012)

18. Jeljeli, H.: Accelerating iterative SpMV for Discrete Logarithm Problem us-
ing GPUs (2013), preprint, 11 pages, available at http://hal.inria.fr/

hal-00734975

19. Joux, A., Lercier, R.: The function field sieve is quite special. In: Fieker, C., Kohel,
D.R. (eds.) Algorithmic Number Theory – ANTS-V. Lecture Notes in Computer
Science, vol. 2369, pp. 431–445. Springer–Verlag (2002)

20. Joux, A.: Discrete logarithms in GF(21778). E-mail to the NMBRTHRY mailing
list, http://listserv.nodak.edu/archives/nmbrthry.html (Feb 2013)

21. Joux, A.: Discrete logarithms in GF(24080). E-mail to the NMBRTHRY mailing
list, http://listserv.nodak.edu/archives/nmbrthry.html (Mar 2013)

22. Joux, A.: Discrete logarithms in GF(26168) [= GF((2257)24)]. E-mail to the NM-
BRTHRY mailing list, http://listserv.nodak.edu/archives/nmbrthry.html

(May 2013)
23. Joux, A.: A new index calculus algorithm with complexity L(1/4 + o(1)) in very

small characteristic. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) Selected Areas
in Cryptography – SAC 2013. Lecture Notes in Computer Science, vol. 8282, pp.
355–379. Springer–Verlag (2014)

24. Kleinjung, T.: private communication (2012)
25. LaMacchia, B.A., Odlyzko, A.M.: Solving large sparse linear systems over finite

fields. In: Menezes, A.J., Vanstone, S.A. (eds.) Advances in Cryptology – CRYPTO
’90. Lecture Notes in Computer Science, vol. 537, pp. 109–133. Springer–Verlag
(1990)

26. Matsumoto, R.: Using Cab curves in the function field sieve. IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sciences E82-A(3),
551–552 (1999)

27. Panario, D., Gourdon, X., Flajolet, P.: An analytic approach to smooth polynomi-
als over finite fields. In: Buhler, J.P. (ed.) Algorithmic Number Theory – ANTS-III.
Lecture Notes in Computer Science, vol. 1423, pp. 226–236. Springer–Verlag (1998)

http://listserv.nodak.edu/archives/nmbrthry.html
http://listserv.nodak.edu/archives/nmbrthry.html
http://hal.inria.fr/hal-00734975
http://hal.inria.fr/hal-00734975
http://listserv.nodak.edu/archives/nmbrthry.html
http://listserv.nodak.edu/archives/nmbrthry.html
http://listserv.nodak.edu/archives/nmbrthry.html

	FFS Factory: Adapting Coppersmith's ``Factorization Factory'' to the Function Field Sieve

