USING MALAY RESOURCES TO BOOTSTRAP ASR FOR A VERY UNDER-RESOURCED LANGUAGE: IBAN

Abstract : This paper describes our experiments and results on using a local dominant language in Malaysia (Malay), to boot- strap automatic speech recognition (ASR) for a very under- resourced language: Iban (also spoken in Malaysia on the Borneo Island part). Resources in Iban for building a speech recognition were nonexistent. For this, we tried to take ad- vantage of a language from the same family with several similarities. First, to deal with the pronunciation dictionary, we proposed a bootstrapping strategy to develop an Iban pronunciation lexicon from a Malay one. A hybrid version, mix of Malay and Iban pronunciations, was also built and evaluated. Following this, we experimented with three Iban ASRs; each depended on either one of the three different pronunciation dictionaries: Malay, Iban or hybrid.
Type de document :
Communication dans un congrès
SLTU 2014, May 2014, Saint-Petersbourg, Russia. 2014
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01002920
Contributeur : Laurent Besacier <>
Soumis le : samedi 7 juin 2014 - 14:36:39
Dernière modification le : jeudi 11 janvier 2018 - 06:22:06
Document(s) archivé(s) le : dimanche 7 septembre 2014 - 10:45:40

Fichier

sltu2014_sarah.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01002920, version 1

Citation

Sarah Samson Juan, Laurent Besacier, Solange Rossato. USING MALAY RESOURCES TO BOOTSTRAP ASR FOR A VERY UNDER-RESOURCED LANGUAGE: IBAN. SLTU 2014, May 2014, Saint-Petersbourg, Russia. 2014. 〈hal-01002920〉

Partager

Métriques

Consultations de la notice

164

Téléchargements de fichiers

423