Automatic propagation of manual annotations for multimodal person identification in TV shows

Abstract : In this paper an approach to human annotation propagation for person identification in the multimodal context is proposed. A system is used, which combines speaker diarization and face clustering to produce multimodal clusters. The whole multimodal clusters are later annotated rather than just single tracks, which is done by propagation. Optical character recogni- tion systems provides initial annotation. Four different strategies, which select candidates for annotation, are tested. The initial results of annotation propagation are promising. With the use of a proper active learning selection strategy the human annotator involvement could be reduced even further.
Type de document :
Communication dans un congrès
12th International Workshop on Content-Based Multimedia Indexing (CBMI), Jun 2014, Klagenfurt, Austria. 2014
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01002927
Contributeur : Laurent Besacier <>
Soumis le : samedi 7 juin 2014 - 15:01:06
Dernière modification le : mardi 24 avril 2018 - 13:30:31
Document(s) archivé(s) le : dimanche 7 septembre 2014 - 10:46:25

Fichier

draft.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01002927, version 1

Citation

Mateusz Budnik, Johann Poignant, Laurent Besacier, Georges Quénot. Automatic propagation of manual annotations for multimodal person identification in TV shows. 12th International Workshop on Content-Based Multimedia Indexing (CBMI), Jun 2014, Klagenfurt, Austria. 2014. 〈hal-01002927〉

Partager

Métriques

Consultations de la notice

231

Téléchargements de fichiers

1344