Some Propositions to Improve the Prediction Capability of Word Confidence Estimation for Machine Translation

Abstract : —Word Confidence Estimation (WCE) is the task of predicting the correct and incorrect words in the MT output. Dealing with this problem, this paper proposes some ideas to build a binary estimator and then enhance its prediction capability. We integrate a number of features of various types (system-based, lexical, syntactic and semantic) into the conventional feature set, to build our classifier. After the experiment with all features, we deploy a " Feature Selection " strategy to filter the best performing ones. Next, we propose a method that combines multiple " weak " classifiers to build a strong " composite " classifier by taking advantage of their complementarity. Experimental results show that our propositions helped to achieve a better performance in term of F-score. Finally, we test whether WCE output can play any role in improving the sentence level confidence estimation system.
Type de document :
Article dans une revue
Journal of Computer Science and Communication Engineering, VNU, 2014
Liste complète des métadonnées

Littérature citée [29 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01002931
Contributeur : Laurent Besacier <>
Soumis le : vendredi 23 février 2018 - 12:41:55
Dernière modification le : vendredi 23 février 2018 - 17:47:05
Document(s) archivé(s) le : jeudi 24 mai 2018 - 20:10:36

Fichier

bare_jrnl.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01002931, version 1

Citation

Ngoc-Quang Luong, Laurent Besacier, Benjamin Lecouteux. Some Propositions to Improve the Prediction Capability of Word Confidence Estimation for Machine Translation. Journal of Computer Science and Communication Engineering, VNU, 2014. 〈hal-01002931〉

Partager

Métriques

Consultations de la notice

217

Téléchargements de fichiers

14