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Abstract. The Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) is widely accepted as a robust derivative-free continuous optimiza-
tion algorithm for non-linear and non-convex optimization problems.
CMA-ES is well known to be almost parameterless, meaning that only
one hyper-parameter, the population size, is proposed to be tuned by
the user. In this paper, we propose a principled approach called self-
CMA-ES to achieve the online adaptation of CMA-ES hyper-par ameters
in order to improve its overall performance. Experimental r esults show
that for larger-than-default population size, the default settings of hyper-
parameters of CMA-ES are far from being optimal, and that sel f-CMA-
ES allows for dynamically approaching optimal settings.

1 Introduction

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES [ 5]) is a contin-
uous optimizer which only exploits the ranking of estimated candidatesolutions
to approach the optimum of an objective function f : Rn ! R. CMA-ES is
also invariant w.r.t. a�ne transformations of the decision space, explaining the
known robustness of the algorithm. An important practical advantage of CMA-
ES is that all hyper-parameters thereof are de�ned by default with respect to
the problem dimensionn. Practically, only the population size � is suggested to
be tuned by the user, e.g. when a parallelization of the algorithm is considered or
the problem at hand is known to be multi-modal and/or noisy [1,8]. Other hyper-
parameters have been provided robust default settings (depending on n and � ),
in the sense that their o�ine tuning allegedly hardly improves the CMA- ES per-
formance for unimodal functions. In the meanwhile, for multi-modal functions it
is suggested that the overall performance can be signi�cantly improved by o�ine
tuning of � and multiple stopping criteria [ 16,11]. Additionally, it is shown that
CMA-ES can be improved by a factor up to 5-10 by the use of surrogate models
on unimodal ill-conditioned functions [14]. This suggests that the CMA-ES per-
formance can be improved by better exploiting the information in the evaluated
samples (x; f (x)).



This paper focuses on the automatic online adjustment of the CMA-ES
hyper-parameters. The proposed approach, called self-CMA-ES, relies on a sec-
ond CMA-ES instance operating on the hyper-parameter space ofthe �rst CMA-
ES, and aimed at increasing the likelihood of generating the most successful
samplesx in the current generation. The paper is organized as follows. Section 2
describes the original (�=� w ; � )-CMA-ES. self-CMA-ES is described in Section3
and its experimental validation is discussed in Section4 comparatively to related
work. Section 5 concludes the paper.

2 Covariance Matrix Adaptation Evolution Strategy

The Covariance Matrix Adaptation Evolution Strategy [ 6,7,5] is acknowledgedly
the most popular and the most e�cient Evolution Strategy algorithm .

The original ( �=� w ; � )-CMA-ES (Algorithm 1) proceeds as follows. At the

t-th iteration, a Gaussian distribution N
�

m t ; � t 2C t
�

is used to generate� can-

didate solution xk 2 Rn , for k = 1 : : : � (line 5):

x t
k = N

�
m t ; � t 2

C t
�

= m t + � t N
�
0; C t � ; (1)

where the meanm t 2 Rn of the distribution can be interpreted as the cur-
rent estimate of the optimum of function f , C t 2 Rn � n is a (positive de�nite)
covariance matrix and � t is a mutation step-size. These� solutions are evaluated
according to f (line 6). The new meanm t +1 of the distribution is computed as
a weighted sumof the best � individuals out of the � ones (line 7). Weights
w1 : : : w� are used to control the impact of selected individuals, with usually
higher weights for top ranked individuals (line 1).

The adaptation of the step-size� t , inherited from the Cumulative Step-Size
Adaptation Evolution Strategy (CSA-ES [ 6]), is controlled by the evolution path
pt +1

� . Successful mutation stepsm t +1 � m t

� t (line 8) are tracked in the sampling
space, i.e., in the isotropic coordinate system de�ned by the eigenvectors of the
covariance matrix C t . To update the evolution path pt +1

� , i) a decay/relaxation
factor c� is used to decrease the importance of previous steps; ii) the step-
size is increased if the length of the evolution pathpt +1

� is longer than the
expected length of the evolution path under random selectionE kN (0; I )k; iii)
otherwise it is decreased (line13). Expectation of kN (0; I )k is approximated byp

n(1� 1
4n + 1

21n 2 ). A damping parameter d� controls the change of the step-size.
The covariance matrix update consists of two parts (line 12): a rank-one

update [7] and a rank-� update [5]. The rank-one update computes the evolution
path pt +1

c of successful moves of the meanm
t +1 � m t

� t of the mutation distribution
in the given coordinate system (line10), along the same lines as the evolution
path pt +1

� of the step-size. To stall the update ofpt +1
c when � increases rapidly,

a h� trigger is used (line 9).
The rank-� update computes a covariance matrixC � as a weighted sum of

the covariances of successful steps of the best� individuals (line 11). Covariance



Algorithm 1 The (�=� w ; � )-CMA-ES

1: given n 2 N+ , � = 4 + b3ln nc, � = b�= 2c, wi =
ln( � + 1

2 ) � ln i
P �

j =1 (ln( � + 1
2 ) � ln j )

for i = 1 : : : � ,

� w = 1P �
i =1 w 2

i
, c� = � w +2

n + � w +3 , d� = 1 + c� + 2 max(0 ;
q

� w � 1
n +1 � 1), cc = 4

n +4 ,

c1 = 2
( n +1 :3) 2 + � w

, c� = 2 ( � w � 2+1 =� w )
( n +2) 2 + � w

2: initialize m t =0 2 Rn ; � t =0 > 0; pt =0
� = 0; pt =0

c = 0; C t =0 = I ; t  0
3: repeat
4: for k = 1 ; : : : ; � do
5: xk = m t + � t N

�
0; C t �

6: f k = f (xk )
7: m t +1 =

P �
i =1 wi x i : � // the symbol i : � denotes i -th best individual on f

8: pt +1
� = (1 � c� )pt

� +
p

c� (2 � c� )
p

� w C t � 1
2 m t +1 � m t

� t

9: h� = 11kp t +1
� k<

p
1� (1 � c� ) 2( t +1) (1 :4+ 2

n +1 ) EkN ( 0 ; I ) k

10: pt +1
c = (1 � cc)pt

c + h�

p
cc(2 � cc )

p
� w

m t +1 � m t

� t

11: C � =
P �

i =1 wi
x i : � � m t

� t � ( x i : � � m t ) T

� t

12: C t +1 = (1 � c1 � c� )C t + c1 pt +1
c pt +1

c
T

| {z }
rank � one update

+ c� C �
|{z}

rank � � update

13: � t +1 = � t exp( c�
d �

( kpt +1
� k

EkN ( 0 ; I ) k � 1))
14: t = t + 1
15: until stopping criterion is met

matrix C itself is replaced by a weighted sum of the rank-one (weightc1 [7])
and rank-� (weight c� [5]) updates, with c1 and c� positive and c1 + c� � 1.

While the optimal parameterization of CMA-ES remains an open problem,
the default parameterization is found quite robust on noiseless unimodal func-
tions [5], which explains the popularity of CMA-ES.

3 The self-CMA-ES

The proposed self-CMA-ES approach is based on the intuition that the optimal
hyper-parameters of CMA-ES at time t should favor the generation of the best
individuals at time t, under the (strong) assumption that an optimal parame-
terization and performance of CMA-ES in each time t will lead to the overall
optimal performance.

Formally, this intuition leads to the following procedure. Let � t
f denote the

hyper-parameter vector used for the optimization of objectivef at time t (CMA-
ES stores its state variables and internal parameters of iterationt in � t and the
'.'-notation is used to access them). At time t +1, the best individuals generated
according to � t

f are known to be the top-ranked individuals xt
1:� : : : x t

� :� , where
x t

i :� stands for the i -th best individual w.r.t. f . Hyper-parameter vector � t
f would

thus have been all the better, if it had maximized the probability of generating
these top individuals.



Along this line, the optimization of � t
f is conducted using a second CMA-ES

algorithm, referred to as auxiliary CMA-ES as opposed to the one concerned
with the optimization of f , referred to as primary CMA-ES. The objective of
the auxiliary CMA-ES is speci�ed as follows:

Given : hyper-parameter vector � i
f and points (x i

1:� ; f (x i
1:� )) evaluated by

primary CMA-ES at steps i = 1 ; : : : ; t (noted as � i +1
f :f (x1:� ) in Algorithm 2),

Find : � t; �
f such that i) backtracking the primary CMA-ES to its state at time

t � 1; ii) replacing � t
f by � t; �

f , would maximize the likelihood of xt
i :� for i = 1 : : : � .

The auxiliary CMA-ES might thus tackle the maximization of gt (� ) computed
as the weighed log-likelihood of the top-ranked� sel individuals at time t:

gt (� ) =
� selX

i =1

wsel;i log
�
P(xt

i :� j� t
f = �

�
); (2)

where wsel;i � 0; i = 1 : : : � sel ;
P � sel

i =1 wsel;i = 1 ; and by construction

P(x i jm t ; C t ) =
1

q
(2� )n jC t j

exp (� 0:5(m t � xt
i )C

t � 1
(m t � x t

i )) ; (3)

whereC t is the covariance matrix multiplied by � t 2 and jC t j is its determinant.
While the objective function for the auxiliary CMA-ES de�ned by Eq. ( 2)

is mathematically sound, it yields a di�cult optimization problem; �rstly t he
probabilities are scale-sensitive; secondly and overall, in a worst case scenario, a
single good but unlikely solution may lead the optimization of � t

f astray.
Therefore, another optimization objective ht (� ) is de�ned for the auxiliary

CMA-ES, where ht (� ) measures the agreement onxt
i :� for i = 1 : : : � between i)

the order de�ned from f ; ii) the order de�ned from their likelihood conditioned
by � t

f = � (Algorithm 3). Procedure ReproduceGenerationCMA in Algorithm 3
updates the strategy parameters described from line7 to line 14 in Algorithm
1 using already evaluated solutions stored in� t

f :x i :� . Line 4 computes the Ma-
halanobis distance, division by step-size is not needed since only ranking will be
considered in line 5 (decreasing order of Mahalanobis distances corresponds to
increasing order of log-likelihoods). Line 6 computes a weighted sum of ranks of
likelihoods of best individuals.

Finally, the overall scheme of self-CMA-ES (Algorithm 2) involves two in-
terdependent CMA-ES optimization algorithms, where the primary CMA-ES is
concerned with optimizing objective f , and the auxiliary CMA-ES is concerned
with optimizing objective ht , that is, optimizing the hyper-parameters of the pri-
mary CMA-ES4. Note that self-CMA-ES is not per sea \more parameterless\
algorithm than CMA-ES, in the sense that the user is still invited to modify the
population size � . The main purpose of self-CMA-ES is to achieve the online
adaptation of the other CMA-ES hyper-parameters.
4 This scheme is actually inspired from the one proposed for surrogate-assisted opti-

mization [ 13], where the auxiliary CMA-ES was in charge of optimizing the surrogate
learning hyper-parameters.



Algorithm 2 The self-CMA-ES
1: t  1
2: � t

f  InitializationCMA() f primary CMA-ES aimed at optimizing f g
3: � t

h  InitializationCMA() f auxiliary CMA-ES aimed at optimizing ht g
4: �ll � t

f with corresponding parameters stored in mean of distributi on � t
h :m

5: � t +1
f  GenerationCMA( f , � t

f )
6: t  t + 1
7: repeat
8: � t +1

f  GenerationCMA( f; � t
f )

9: � t +1
h  GenerationCMA( ht ; � t

h )
10: �ll � t +1

f with corresponding parameters stored in mean of distributi on � t +1
h :m

11: t  t + 1
12: until stopping criterion is met

Speci�cally, while the primary CMA-ES optimizes f (x) (line 8), the auxiliary
CMA-ES maximizes ht (� ) (line 9) by sampling and evaluating � h variants of � t

f .
The updated mean of the auxiliary CMA-ES in the hyper-parameter space is
used as a local estimate of the optimal hyper-parameter vector for the primary
CMA-ES. Note that the auxiliary CMA-ES achieves a single iteration in t he
hyper-parameter space of the primary CMA-ES, with two motivations: limiting
the computational cost of self-CMA-ES (which scales as� h times the time com-
plexity of the CMA-ES), and preventing � t

f from over�tting the current sample
x t

i :� ; i = 1 : : : � .

Algorithm 3 Objective function ht (� )

1: Input : � , � t +1
f ,� t � 1

f , � t
f , � , wsel;i for i = 1 ; : : : ; �

2: �
0t � 1
f  �

3: �
0t
f  ReproduceGenerationCMA( f; �

0t � 1
f ) using already evaluated � t

f :x i : �

4: di  





 �

0t
f :

p
C � 1 � (� t +1

f :x t
i � �

0t
f :m)






 ; for i = 1 ; : : : ; � t +1

f :�

5: pi  rank of di ; i = 1 : : : � sorted in decreasing order
6: h(� )  

P �
i =1 wsel;i pi : � f i : � denotes the rank of � t +1 :x i g

7: Output : h(� )

4 Experimental Validation

The experimental validation of self-CMA-ES investigates the performance of
the algorithm comparatively to CMA-ES on the BBOB noiseless problems [4].
Both algorithms are launched in IPOP scenario of restarts when theCMA-ES
is restarted with doubled population size once stopping criteria [3] are met5.
5 For the sake of reproducibility, the source code is available at

https://sites.google.com/site/selfcmappsn/
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Fig. 1. Evolution of learning rates c1 , c� , cc (lines with markers, left y-axis) and
log10(objective function) (plain line, right y-axis) of CM A-ES (left column) and self-
CMA-ES (right column) on 10- and 20-dimensional Sphere and R osenbrock functions
from [4]. The medians of 15 runs are shown.
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Fig. 2. Evolution of learning rates c1 , c� , cc (lines with markers, left y-axis) and
log10(objective function) (plain line, right y-axis) of CM A-ES (left column) and self-
CMA-ES (right column) on 10- and 20-dimensional Rotated Ell ipsoid and Sharp Ridge
functions from [ 4]. The medians of 15 runs are shown.



The population size � is chosen to be 100 for both CMA-ES and self-CMA-
ES. We choose this value (about 10 times larger than the default one, see the
default parameters of CMA-ES in Algorithm 1) to investigate how sub-optimal
the other CMA-ES hyper-parameters, derived from � , are in such a case, and
whether self-CMA-ES can recover from this sub-optimality.

The auxiliary CMA-ES is concerned with optimizing hyper-parametersc1, c�

and cc (Algorithm 1), responsible for the adaptation of the covariance matrix of
the primary CMA-ES. These parameters range in [0; :9] subject to 0 � c1 + c� �
0:9; the constraint is meant to enforce a feasibleC update for the primary
CMA-ES (the decay factor of C should be in [0; 1]). Infeasible hyper-parameter
solutions get a very large penalty, multiplied by the sum of distances of infeasible
hyper-parameters to the range of feasibility.

We set wsel;i = 1 =� for i = 1 ; : : : ; � and � = b�= 2c to 50. The internal
computational complexity of self-CMA-ES thus is � h = 20 times larger than
the one of CMA-ES without lazy update (being reminded that the internal time
complexity is usually negligible compared to the cost per objective function
evaluation).

4.1 Results

Figures 1 and 2 display the comparative performances of CMA-ES (left) and
self-CMA-ES (right) on 10 and 20-dimensional Sphere, Rosenbrock, Rotated El-
lipsoid and Sharp ridge functions from the noiseless BBOB testbed [4] (medians
out of 15 runs). Each plot shows the value of the hyper-parameters (left y-axis)
together with the objective function (in logarithmic scale, right y-a xis). Hyper-
parametersc1, c� and cc are constant and set to their default values for CMA-ES
while they are adapted along evolution for self-CMA-ES.

In self-CMA-ES, the hyper-parameters are uniformly initialized in [0; 0:9]
(therefore the medians are close to 0.45) and they gradually converge to values
which are estimated to provide the best update of the covariance matrix w.r.t.
the ability to generate the current best individuals. It is seen that these values
are problem and dimension-dependent. The values ofc1 are always much smaller
than c� but are comparable to the default c1. The values ofc� and cc and c1 are
almost always larger than the default ones; this is not a surprise forc1 and c� , as
their original default values are chosen in a rather conservative way to prevent
degeneration of the covariance matrix.

Several interesting observations can be made about the dynamicsof the pa-
rameter values. The value ofc� is high most of the times on the Rosenbrock
functions, but it decreases toward values similar to those of the Sphere func-
tions, when close to the optimum. This e�ect is observed on most problems;
indeed, on most problems fast adaptation of the covariance matrixwill improve
the performance in the beginning, while the distribution shape shouldremain
stable when the covariance matrix is learned close to the optimum.

The overall performance of self-CMA-ES on the considered problems is com-
parable to that of CMA-ES, with a speed-up of a factor up to 1.5 on Sharp
Ridge functions. The main result is the ability of self-CMA-ES to achieve the



online adaptation of the hyper-parameters depending on the problem at hand,
side-stepping the use of long calibrated default settings6.

4.2 Discussion

self-CMA-ES o�ers a proof of concept for the online adaptation ofthree CMA-ES
hyper-parameters in terms of feasibility and usefulness. Previousstudies on pa-
rameter settings for CMA-ES mostly considered o�ine tuning (see, e.g., [16,11])
and theoretical analysis dated back to the �rst papers on Evolution Strategies.
The main limitation of these studies is that the suggested hyper-parameter values
are usually speci�c to the (class of) analyzed problems. Furthermore, the sug-
gested values are �xed, assuming that optimal parameter values remain constant
along evolution. However, when optimizing a function whose landscape gradu-
ally changes when approaching the optimum, one may expect optimalhyper-
parameter values to re
ect this change as well.

Studies on the online adaptation of hyper-parameters (apart from � , m and
C) usually consider population size in noisy [2], multi-modal [ 1,12] or expensive
[9] optimization. A more closely related approach was proposed in [15] where the
learning rate for step-size adaptation is adapted in a stochastic way similarly to
Rprop-updates [10].

5 Conclusion and Perspectives

This paper proposes a principled approach for the self-adaptationof CMA-ES
hyper-parameters, tackled as an auxiliary optimization problem: maximizing the
likelihood of generating the best sampled solutions. The experimental validation
of self-CMA-ES shows that the learning rates involved in the covariance ma-
trix adaptation can be e�ciently adapted on-line, with comparable or better
results than CMA-ES. It is worth emphasizing that matching the performance
of CMA-ES, the default setting of which represent a historical consensus between
theoretical analysis and o�ine tuning, is nothing easy.

The main novelty of the paper is to o�er an intrinsic assessment of the al-
gorithm internal state, based on retrospective reasoning (giventhe best current
solutions, how could the generation of these solutions have been made easier)
and on one assumption (the optimal hyper-parameter values at time t are "su�-
ciently good\ at time t + 1). Further work will investigate how this intrinsic
assessment can support the self-adaptation of other continuous and discrete
hyper-parameters used to deal with noisy, multi-modal and constrained opti-
mization problems.
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6 cc = 4
n +4 , c1 = 2

( n +1 :3) 2 + � w
, c� = 2 ( � w � 2+1 =� w )

( n +2) 2 + � w
.
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