C. L. Smith, Practical process control, 2009.
DOI : 10.1002/9780470431481

H. K. Khalil, High-gain observers in nonlinear feedback control, Lecture Notes in Control and Information Sciences, vol.244, pp.249-268, 1999.
DOI : 10.1007/BFb0109930

URL : https://hal.archives-ouvertes.fr/hal-01248861

T. Menard, E. Moulay, and W. Perruquetti, A Global High-Gain Finite-Time Observer, IEEE Transactions on Automatic Control, vol.55, issue.6, pp.1500-1506, 2010.
DOI : 10.1109/TAC.2010.2045698

URL : https://hal.archives-ouvertes.fr/hal-00455790

R. Patton and J. Chen, Observer-based fault detection and isolation: Robustness and applications, Control Engineering Practice, vol.5, issue.5, pp.671-682, 1997.
DOI : 10.1016/S0967-0661(97)00049-X

C. Chen and J. Lee, Design of high-order digital differentiators using L/sub 1/ error criteria, IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol.42, issue.4, pp.287-291, 1995.
DOI : 10.1109/82.378044

M. Hanke and O. Scherzer, Error Analysis of an Equation Error Method for the Identification of the Diffusion Coefficient in a Quasi-linear Parabolic Differential Equation, SIAM Journal on Applied Mathematics, vol.59, issue.3, pp.1012-1027, 1999.
DOI : 10.1137/S0036139997331628

A. Levant, Robust exact differentiation via sliding mode technique, Automatica, vol.34, issue.3, pp.379-384, 1998.
DOI : 10.1016/S0005-1098(97)00209-4

W. Perruquetti, T. Floquet, and E. Moulay, Finite-Time Observers: Application to Secure Communication, IEEE Transactions on Automatic Control, vol.53, issue.1, pp.356-360, 2008.
DOI : 10.1109/TAC.2007.914264

URL : https://hal.archives-ouvertes.fr/inria-00176758

R. Sanfelice and L. Praly, On the performance of high-gain observers with sign-indefinite gain adaptation under measurement noise, Automatica, vol.47, issue.10, pp.2141-2330, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00643452

V. Korobov, A general approach to synthesis problem, Doklady Academii Nauk SSSR, vol.248, pp.1051-1063, 1979.

J. Adamy and A. Flemming, Soft variable-structure controls: a survey, Automatica, vol.40, issue.11, pp.1821-1844, 2004.
DOI : 10.1016/j.automatica.2004.05.017

A. Polyakov, D. Efimov, and W. Perruquetti, Finite-time Stabilization Using Implicit Lyapunov Function Technique, 9th Symposium on Nonlinear Control Systems, pp.4-6, 2013.
DOI : 10.3182/20130904-3-FR-2041.00043

URL : https://hal.archives-ouvertes.fr/hal-00844386

E. Roxin, On finite stability in control systems, Rendiconti del Circolo Matematico di Palermo, vol.XV, issue.3, pp.273-283, 1966.
DOI : 10.1007/BF02844106

S. Bhat and D. Bernstein, Finite-Time Stability of Continuous Autonomous Systems, SIAM Journal on Control and Optimization, vol.38, issue.3, pp.751-766, 2000.
DOI : 10.1137/S0363012997321358

V. Zubov, On systems of ordinary differential equations with generalized homogenous right-hand sides, Izvestia vuzov. Mathematica, vol.1, pp.80-88, 1958.

S. P. Bhat and D. S. Bernstein, Geometric homogeneity with applications to finite-time stability, Mathematics of Control, Signals, and Systems, vol.17, issue.2, pp.101-127, 2005.
DOI : 10.1007/s00498-005-0151-x

R. Courant and F. John, Introduction to calculus and analysis (, 2000.

H. Nakamura, N. Nakamura, and H. Nishitani, Stabilization of homogeneous systems using implicit control lyhapunov functions, 7th IFAC Symposium on Nonlinear Control Systems, pp.21-24, 2007.

H. Tuan, P. Apkaryan, and H. Tuy, Advanced global optimization algorithms for parameterized LMIs, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304), pp.7-10, 1999.
DOI : 10.1109/CDC.1999.832794