
HAL Id: hal-01005489
https://inria.hal.science/hal-01005489v1

Preprint submitted on 12 Jun 2014 (v1), last revised 12 Nov 2014 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Convolutional Kernel Networks
Julien Mairal, Piotr Koniusz, Zaid Harchaoui, Cordelia Schmid

To cite this version:
Julien Mairal, Piotr Koniusz, Zaid Harchaoui, Cordelia Schmid. Convolutional Kernel Networks.
2014. �hal-01005489v1�

https://inria.hal.science/hal-01005489v1
https://hal.archives-ouvertes.fr

Convolutional Kernel Networks

Julien Mairal, Piotr Koniusz, Zaid Harchaoui, and Cordelia Schmid
Inria∗

firstname.lastname@inria.fr

Abstract

An important goal in visual recognition is to devise image representations that are
invariant to particular transformations. In this paper, we address this goal with a
new type of convolutional neural network (CNN) whose invariance is encoded by
a reproducing kernel. Unlike traditional approaches where neural networks are
learned either to represent data or for solving a classification task, our network
learns to approximate the kernel feature map on training data.

Such an approach enjoys several benefits over classical ones. First, by teach-
ing CNNs to be invariant, we obtain simple network architectures that achieve a
similar accuracy to more complex ones, while being easy to train and robust to
overfitting. Second, we bridge a gap between the neural network literature and
kernels, which are natural tools to model invariance. We evaluate our methodol-
ogy on visual recognition tasks where CNNs have proven to perform well, e.g.,
digit recognition with the MNIST dataset, and the more challenging CIFAR-10
and STL-10 datasets, where our accuracy is competitive with the state of the art.

1 Introduction

We have recently seen a revival of attention given to convolutional neural networks (CNNs) [22],
due to their success in large-scale visual recognition tasks [15, 21, 29]. The architecture of CNNs
is relatively simple and consists of successive layers organized in a hierarchical fashion. Each layer
involves convolutions with learned filters followed by a non-linearity, and downsampling operations
called “feature pooling”. The resulting image representation seems to achieve some invariance to
image perturbations and to encode complex visual patterns [32]. Training CNNs remains however
difficult since high-capacity networks may involve billions of parameters to learn, which requires
both high computational power, e.g., GPUs, and appropriate regularization techniques [18, 21, 29].

The exact nature of invariance achieved by CNNs is also not well understood. Only recently, the in-
variance of some related architectures has been characterized; this is the case for the wavelet scatter-
ing transform [8], or the hierarchical models of [7]. Our work revisits convolutional neural networks,
but adopts a significantly different approach than the traditional one. We use indeed kernels [26],
which are natural tools to model invariance [14]. Inspired by the hierarchical kernel descriptors
of [2], we propose a reproducing kernel that produces invariant multi-layer image representations.

Our main contribution is an approximation scheme called convolutional kernel network (CKN) to
make the kernel approach computationally feasible. Such a scheme turns out to be a new type of
CNN, which differs from classical ones in its objective function. The network is trained to linearly
approximate the kernel, and thus the procedure involves no supervision. Another difference is in
the non-linear functions that we use. Interestingly, they resemble rectified linear units [1, 29], even
though they naturally emerge from the approximation scheme and were not handcrafted.

As a result, we bridge a gap between kernel methods and neural networks, and we believe that such
a direction is fruitful for the future. Our network is learned without supervision since the label

∗LEAR team, Inria Grenoble, Laboratoire Jean Kuntzmann, CNRS, Univ. Grenoble Alpes, France.

1

information is only used subsequently in a support vector machine (SVM). Yet, we achieve near
state-of-the-art results on several datasets such as MNIST [22], CIFAR-10 [20] and STL-10 [13]
with simple architectures, few parameters to learn, and no data augmentation. Open-source code for
learning our convolutional kernel networks will be provided upon publication of the paper.

1.1 Related Work

There were several attempts in the past to build kernel-based methods that mimic deep neural net-
works; we only review here the most related to our approach.

Arc-cosine kernels. Kernels for building deep large-margin classifiers have been introduced
in [10]. For any pair of vectors, the single-layer arc-cosine kernel relies on an integral represen-
tation, and multilayer extensions are built by multiple kernel compositions. Similarly, our kernels
rely on a integral representation, and enjoy a multilayer construction. However, in contrast to arc-
cosine kernels: (i) we build our sequence of kernels by convolutions, using local information over
spatial neighborhoods (as opposed to compositions, using global information); (ii) we propose a new
training procedure for learning a compact representation of the kernel in a data-dependent manner.

Multilayer derived kernels. Kernels that enjoy invariance properties for visual recognition were
proposed in [7]. Such kernels are built with a parameterized “neural response” function, which con-
sists in computing the maximal response of a base kernel over a local neighborhood. Multiple layers
are then built by iteratively renormalizing the response kernels and pooling using neural response
functions. Learning is performed by plugging the obtained kernel in a SVM. In contrast to [7], we
propagate information up, from lower to upper layers, by using sequences of convolutions. Further-
more, we propose a simple and effective data-dependent way to learn a compact representation of
our kernels and show that we obtain near state-of-the-art performance on several benchmarks.

Hierarchical kernel descriptors. The kernels proposed in [2, 3] produce multilayer image repre-
sentations for visual recognition tasks. We discuss in details these kernels in the next section: our
paper generalizes them and establishes a strong link with convolutional neural networks.

2 Convolutional Multilayer Kernels

The convolutional multilayer kernel is a generalization of the hierarchical kernel descriptors intro-
duced in computer vision [2, 3]. The kernel produces a sequence of image representations that are
built one on top of each other in a multilayer fashion. Each layer can be interpreted as a non-linear
transformation of the previous one with additional invariance. We call these layers image feature
maps1, and formally define them as follows:

Definition 1. An image feature map ϕ is a function ϕ : Ω → H, where Ω is a (usually discrete)
subset of [0, 1]d representing “coordinates” in the image and H is a Hilbert space.

For all practical examples in this paper, Ω is a two-dimensional grid and corresponds to different
locations in a two-dimensional image. In other words, Ω is a set of pixel coordinates. Given z in Ω,
the point ϕ(z) corresponds to some characteristics of the image at location z, or in a neighborhood
of z. For instance, a color image of size m × n with three channels, red, green, and blue, may be
represented by an initial feature map ϕ0 : Ω0 → H0, where Ω0 is an m × n regular grid, H0 is the
Euclidean space R3, and ϕ0 provides the color pixel values. With the multilayer scheme, non-trivial
feature maps will be obtained subsequently, which will encode more complex image characteristics.
With this terminology in hand, we now introduce the convolutional kernel, first, for a single layer.

Definition 2 (Convolutional Kernel with Single Layer). Let us consider two images represented
by two image feature maps, respectively ϕ and ϕ′ : Ω → H, where Ω is a set of pixel locations,
and H is a Hilbert space. The one-layer convolutional kernel between ϕ and ϕ′ is defined as

K(ϕ, ϕ′) :=
∑

z∈Ω

∑

z′∈Ω

‖ϕ(z)‖H ‖ϕ′(z′)‖H e
− 1

2β2 ‖z−z
′‖2

2e−
1

2σ2 ‖ϕ̃(z)−ϕ̃′(z′)‖2

H , (1)

1In the kernel literature, “feature map” denotes the mapping between data points and their representation in
a RKHS [26]. Here, feature maps refer to spatial maps, as usual in the neural network literature [22].

2

where β and σ are smoothing parameters of Gaussian kernels, and ϕ̃(z) and ϕ̃(z′) are normalized
versions of ϕ(z) and ϕ′(z′), respectively. More precisely, ϕ̃(z) :=(1/max(‖ϕ(z)‖H , ε))ϕ(z), and

the definition is similar for ϕ′(z′).2

It is easy to see thatK is a positive definite kernel since it only involves sums and products of positive
definite kernels [26]. It compares normalized features ϕ̃(z) and ϕ̃′(z′) extracted at all locations z
and z

′ with a Gaussian kernel. Another Gaussian function compares the locations z and z
′ providing

invariance to local deformations. Indeed, when β goes to infinity, the kernel becomes invariant to
the positions z and z

′ of the features ϕ(z) and ϕ′(z′). When β is small, only features placed at the
same location z = z

′ are compared to each other, and the kernel has no shift-invariance. Before
moving to a model with additional layers, let us present a few concrete examples when applying the
convolutional kernel to simple input feature maps ϕ0 : Ω0 → H0.

Gradient map. Assume that H0=R
2 and thatϕ0(z) provides the two-dimensional gradient of the

image at pixel z, which is often computed with first-order differences along each dimension. Then,
the quantity ‖ϕ0(z)‖H0

is the gradient intensity, and ϕ̃0(z) is its orientation, which can be charac-

terized by a particular angle—that is, there exists θ in [0; 2π] such that ϕ̃0(z) = [cos(θ), sin(θ)]. The
resulting kernel K is exactly the kernel descriptor introduced in [2, 3] for natural image patches.

Patch map. In that setting, ϕ0 associates to a location z an image patch of size m ×m centered
at z. Then, the space H0 is simply R

m×m, and ϕ̃0(z) is a contrast-normalized version of the patch,
which is a useful transformation for visual recognition according to classical findings in computer
vision [19]. When the image is encoded with three color channels, patches are of size m×m× 3.

We now define the multilayer convolutional kernel, generalizing some ideas of [2].

Definition 3 (Multilayer Convolutional Kernel). Let us consider a set Ωk−1 ⊆ R
d and a Hilbert

space Hk−1. We build a new set Ωk and a new Hilbert space Hk as follows:

(i) choose a patch shape Pk defined as a bounded symmetric subset of [0, 1]d, and a set of coordi-
nates Ωk such that for all zk in Ωk, the patch {zk}+ Pk is a subset of Ωk−1;3

(ii) define the convolutional kernel Kk on the “patch” feature maps Pk → Hk−1, by replacing
in (1), Ω by Pk, H by Hk−1, and σ, β by appropriate smoothing parameters σk, βk. We denote
by Hk the Hilbert space for which Kk is a reproducing kernel.

An image represented by a feature map ϕk−1 : Ωk−1 → Hk−1 at layer k−1 is now encoded in
the k-th layer as ϕk : Ωk → Hk, where for all zk in Ωk, ϕk(zk) is the representation in Hk of the
patch feature map z 7→ ϕk−1(zk + z) for z in Pk.

Concretely, the kernel Kk between two patches of ϕk and ϕ′
k at respective locations zk and z

′
k is

∑

z∈Pk

∑

z′∈Pk

‖ϕk(zk + z)‖Hk
‖ϕ′

k(z
′
k + z

′)‖Hk
e
− 1

2β2
k
‖z−z

′‖2

2e
− 1

2σ2
k
‖ϕ̃k(zk+z)−ϕ̃′

k(z
′

k+z
′)‖2

Hk . (2)

In Figure 1(a), we illustrate the interactions between the different sets of coordinatesΩk, patches Pk,
and feature spaces Hk across layers. For two-dimensional grids, a typical patch shape is a square,
for example P := {−1/n, 0, 1/n} × {−1/n, 0, 1/n} for a 3 × 3 patch in an image of size n × n.
Information encoded in the k-th layer differs from the (k− 1)-th one in two aspects: first, each
point ϕk(zk) in layer k contains information about several points from the (k−1)-th layer and can
possibly represent more complex patterns; second, the new feature map is more shift-invariant than
the previous one due to the term involving the parameter βk in Eq. (2).

The multilayer convolutional kernel slightly differs from the hierarchical kernel descriptors of [2]
but exploits similar ideas. Bo et al. [2] define indeed several ad hoc kernels for representing local
information in images, such as gradient, color, or shape. These kernels are close to the one defined
in (1) but with a few variations. Some of them do not use normalized features ϕ̃(z), and these kernels
use different weighting strategies for the summands of (1) that are specialized to the image modality,
e.g., color, or gradient, whereas we use the same weight ‖ϕ(z)‖H ‖ϕ′(z′)‖H for all kernels. We
propose instead the generic formulation (1), which appears to perform well in practice. We believe
that such a generalization is useful per se, but our main contribution comes in the next section, where
we use the kernel as a new tool for learning invariant convolutional neural networks.

2When Ω is not discrete, the notation
∑

in (1) should be replaced by the Lebesgue integral
∫

in the paper.
3For two sets A and B, the Minkowski sum A+B is defined as {a + b : a ∈ A, b ∈ B}.

3

Ω0ϕ0(z0) ∈ H0

{z1}+ P1

ϕ1(z1) ∈ H1
Ω1

{z2}+ P2

Ω2

ϕ2(z2) ∈ H2

(a) Hierarchy of Image Feature Maps

ξk−1(z)
ψk−1(zk−1)

(patch extraction)

{zk−1}+Nk−1

convolution
+ non-linearity

ζk(zk−1)

Ωk−1

Gaussian filtering
+ downsampling
= pooling

ξk(z)

(b) Zoom between layer k and k − 1 of our CKN

Figure 1: Left: concrete representation of the successive layers for the multilayer convolutional
kernel. Right: one layer of the convolutional neural network that approximates the kernel.

3 Training Invariant Convolutional Kernel Networks

We now show that a natural approximation scheme for the multilayer convolutional kernel gives
rise to a convolutional neural network. In other words, the approximation can be achieved with a
sequence of spatial convolutions with learned filters, non-linearities, and pooling operations.

Several schemes have been proposed for approximating a non-linear kernel with a linear one, such
as the Nyström method and its variants [5, 30], which consist of projecting the data onto a finite-
dimensional subspace of the Hilbert space for which the kernel is reproducing. Random sampling
techniques in the Fourier domain for shift-invariant kernels are also popular [24]. Being able to
linearly approximate convolutional kernels is critical because computing the full kernel matrix on a
database of images is computationally infeasible, even for a moderate number of images (≈ 10 000)
and moderate number of layers. For this reason, Bo et al. [2] use the Nyström method for their
hierarchical kernel descriptors. In our paper, we show that a particular convolutional neural network
fits well the structure of the convolutional kernel, leading to an approach enjoying classical benefits
of CNNs such as efficient prediction at test time.

3.1 Fast Approximation of the Gaussian Kernel

A recurrent component of our formulation is the Gaussian kernel. In this section, we show that
an approximation scheme involves a linear operation with learned filters followed by a pointwise
non-linearity. Our starting point is the next lemma, which can be obtained after a simple calculation.

Lemma 1 (Expansion of the Gaussian Kernel). For all x and x
′ in R

m, and σ > 0,

e−
1

2σ2 ‖x−x
′‖2

2 =

(

2

πσ2

)
m
2
∫

w∈Rm

e−
1

σ2 ‖x−w‖2
2e−

1

σ2 ‖x′−w‖2
2dw. (3)

The lemma gives us an infinite-dimensional linear representation [
√
Ce−(1/σ2)‖x−w‖2

2]w∈Rm for
all x in R

m, where C is the constant in front of the integral. To obtain a finite-dimensional represen-
tation, we need to approximate the integral with a weighted finite sum, which is a classical problem
in numerical analysis and statistics (see [28] and chapter 8 of [6] for a review). We choose instead a
data-driven approach, and consider two different scenarios:

Small dimension, m ≤ 2. When the data lives in a compact set of Rm, the integral in (3) can be
approximated by uniform sampling over a large enough set. We choose such a strategy for two types

of kernels from Eq. (1): (i) the spatial kernels e−(1/2β2)‖z−z
′‖2

2 ; (ii) the term e−(1/2σ2)‖ϕ̃(z)−ϕ̃(z)′‖2
H

when ϕ is the “gradient map” presented in Section 2. In the latter case, H = R
2 and ϕ̃(z) is the

gradient orientation. We typically sample a few orientations as explained in Section 3.4.

4

Higher dimensions. When the dimension is high, uniform sampling suffers from the curse of
dimensionality. Therefore, we choose to leverage the intrinsic low-dimensionality of the data. We
learn importance weights η = [ηl]

p
l=1 in R

p
+ and sampling points W = [wl]

m
l=1 in R

m×p on training
data x1, . . . ,xn in R

m with the following data-driven non-convex formulation

min
η∈R

p
+
,W∈Rm×p





1

n2

∑

(i,j)

(

e−
1

2σ2 ‖xi−xj‖
2
2 −

p
∑

l=1

ηle
− 1

σ2 ‖xi−wl‖
2
2e−

1

σ2 ‖xj−wl‖
2
2

)2


 . (4)

The resulting representation of a new data point x is simply the vector [
√
ηle

−(1/σ2)‖x−wl‖
2
2]pl=1

in R
p. We use the method (4) for approximating the Gaussian kernels e−(1/2σ2)‖ϕ̃(z)−ϕ̃′(z′)‖2

H in (1),
by proceeding as follows: first, we assume that we already have a finite-dimensional approximation

of ϕ̃(z)—say, of dimension m—which we denote by ψ̃(z); second, we apply (4) to the kernel

e−(1/2σ2)‖ψ̃(z)−ψ̃′(z′)‖2
2 by using a database of features ψ̃(z) in R

m obtained from training data.

We can now start relating our approach to neural networks. After learning the parameters W and η,
computing the finite-dimensional approximation in H of a unit-norm vector x only involves a linear

operation followed by a non-linearity. Indeed, the quantities e−(1/σ2)‖x−wl‖
2
2 can be written as

fl(w
⊤
l x), where fl is the real-valued function u 7→ e−(1+‖wl‖

2
2)/σ

2+2u/σ2

. Since we apply (4) to

normalized data ψ̃(z), we expect the ℓ2-norm of the sampling points wl to to be close to one, and

the functions fl to have the form: u 7→ e(2/σ
2)(u−1) for u = w

⊤
l x in [−1, 1]. In Figure 2, we show

that we obtain a shape resembling the “rectified linear unit” function used in neural networks [29].

u

f(u)
f(u) = e(2/σ

2)(u−1)

f(u) = max(u, 0)

Figure 2: In red, we plot the function u 7→ max(u, 0) often called “rectified linear unit” [29]. In
blue, we plot non-linear functions used by our network. All plots are for u in [−1, 1].

3.2 Approximating the Single-Layer Convolutional Kernel

With the methodology presented in the previous section, we now introduce an approximation scheme
for the convolutional kernel K(ϕ, ϕ′) from Definition 2. We proceed as follows:

(i) we assume that for all ϕ(z) and ϕ′(z′), we already know some finite-dimensional approxima-
tions ψ(z) and ψ′(z′) in R

m;

(ii) the kernels e−(1/2β2)‖z−z
′‖2

2 are approximated by uniform sampling: we define a set of equally

spaced points N , such that e−(1/2β2)‖z−z
′‖2

2 ≈ C′
∑

c∈N e−(1/β2)‖z−c‖2
2e−(1/β2)‖z′−c‖2

2 ,

and C′ is a constant independent of z and z
′.

(iii) we learn some weights η in R
p
+ and sampling points W = [w1, . . . ,wp] in R

m×p to approxi-

mate the kernels e−(1/2σ2)‖ϕ̃(z)−ϕ̃′(z′)‖2
H following the approach of the previous section.

Note that all parameter choices, such as N , β, and σ, are discussed in Section 3.4. By plugging the
above approximations in Eq. (1) and interchanging the sums, we get

K(ϕ, ϕ′) ≈ C′
∑

c∈N

p
∑

l=1

[

∑

z∈Ω

ζl(z)e−(1/β2)‖c−z‖2
2

][

∑

z′∈Ω

ζl(z′)e−(1/β2)‖c−z
′‖2

2

]

, (5)

where we have introduced the quantity

ζl(z) := ‖ψ(z)‖2
√
ηle

−(1/σ2)‖ψ̃(z)−wl‖
2
2 ,

and also, by analogy, the quantity ζl′(z′) for ϕ′. Each function ζl : Ω → R can be interpreted as
a spatial map, where ζl(z) represents a non-linear filter response involving the non-linear functions

5

presented in Figure 2. According to (5), we need to subsample these maps ζl at some points N after

convolving them with the two-dimensional filter z 7→
√
C′e−(1/β2)‖z‖2

2 , leading to a new set of p
maps denoted by ξl : N → R. In the same way, a set of p maps ξl′ are obtained for ϕ′, and

K(ϕ, ϕ′) ≈
∑

c∈N

p
∑

l=1

ξl(c)ξl′(c′). (6)

The maps ζl and ξl coincide with the terminology of “feature maps” from neural networks. Build-
ing the maps ξl from ζl is achieved by Gaussian filtering and subsampling at predefined points c

in N , which is also called a “linear pooling step” in neural networks, and “downsampling” with a
Gaussian anti-aliasing filter in signal processing. In the next section, we show that approximating
the multilayer convolutional kernel can be achieved similarly, and leads to a particular CNN.

3.3 Convolutional Kernel Networks

We have seen that for approximating the single-layer convolutional kernel on a feature map ϕ0 :
Ω0 → H0 where H0 is the Euclidean space R

m0 , we need to (i) compute the linear responses
ϕ̃0(z)

⊤
wl; (ii) apply a pointwise non-linearity to obtain the maps ζl; (iii) perform linear pooling

with Gaussian filtering to obtain new maps ξl. When in addition ϕ0 is the “patch map” defined
in Section 2, the vectors wl can be interpreted as spatial filters, and the dot products ϕ̃0(z)

⊤
wl as

convolutions. As a result, we have just described a one-layer convolutional neural network.

When the kernel involves several layers ϕ0, . . . , ϕk, as in Definition 3, the methodology of the pre-
vious section allows us to build a linear approximation of the kernelK(ϕk, ϕ

′
k) under one condition:

we need to know in advance finite-dimensional approximations ψk(zk) of ϕk(zk) for all zk in Ωk.
We assume that such a condition is always satisfied for H0, which we choose finite-dimensional.
Therefore, it remains to show how to build ψk(zk) when the condition holds for k − 1. From Def-
inition 3, ϕk(zk) in Hk is the representation derived from the kernel Kk presented in Eq. (2) of
the patch feature map z 7→ ϕk−1(zk + z). To achieve our goal, we apply the methodology of the
previous section toKk, by replacing in (5) Ω by Pk, β by βk, σ by σk, p by pk, and N by Nk. Then,
we obtain an approximation ψk(zk) of dimension mk = |Nk|pk.

Note that since the patches may overlap, computing the vectors ψk(zk) can be done efficiently for
a given image represented by ϕk−1 : Ωk−1 → Hk−1. As in the previous section, let us define

the maps ζlk : Ωk−1 → R as ζlk(z) := ‖ψk−1(z)‖2√ηle−(1/σ2
k)‖ψ̃k−1(z)−wl‖

2
2 for all z in Ωk−1

and l = 1, . . . , pk. Given the maps ζlk, all vectors ψk(zk) can be computed in O(|Ωk||Nk||Pk|pk)
operations, whereas the maps ζlk require storing O(|Ωk−1|pk) real values.

At this point, we have obtained a computationally feasible approximation scheme that is fairly gen-
eral regarding the choice of domains Ωk and patches Pk. However, a last approximation allows
us to fill in the gap between our approach and multilayer CNNs under a few conditions: (i) Ωk−1

and Ωk are grids; (ii) Pk is a square with same spacing as Ωk−1; (iii) Nk is a square containing 0
with same spacing as Ωk; Then, we can build the maps ξkl as in the previous section, by convolving

the maps ζlk with the Gaussian filter z 7→
√
C′e−(1/β2)‖z‖2

2 , followed by subsampling with the same
spacing as Ωk. Such a construction is illustrated in Figure 1(b). As a result, a |Nk|pk-dimensional
approximation of ϕk(zk) is simply the pk ×Nk patch [ξlk(zk + z)]l,z∈Nk

. Consequently, obtaining
the desired approximationψk(zk) requires extracting a patch from pk maps of size O(|Ωk|), and the
dot products w⊤

l ψk(zk) are spatial convolutions on the “pooled” maps ξlk . We have now obtained
the convolutional kernel network displayed in Figure 1(b).

3.4 Practical Implementation: Parameter Setting and Optimization

The parameters that our convolutional kernel network requires are the following quantities: N (num-
ber of layers), βk, σk (smoothing parameters); pk (number of filters per layer), Nk (to obtain ψk(zk)
from the maps ξlk), the downsampling factor between ξlk and ζlk, and the initial maps ζl0. Other pa-
rameters appearing in the original kernel formulation of Section 2, such as Pk, Ωk, do not need to
be chosen since they are implicitly linked with the ones we have just listed.

First, N , pk, Nk, and the downsampling factors are classical parameters of CNNs, which are left to
the discretion of the user. The sets Nk represent patches on the maps ξlk, as shown in Figure 1(b),

6

and are typically small. We tried the sizes m×m with m = 3, 4, 5 for the first layer, and m = 2, 3
for the upper ones. The number of filters pk in our experiments is in the set {50, 100, 200, 400, 800}.
The downsampling factor is always chosen to be 2 between two consecutive layers, whereas the last
layer is downsampled to produce final maps ξlN of a small size—say, 5× 5 or 4× 4.

The initial map ζl0 also needs to be set up. When using the “patch map” of Section 2, the maps ζl0
are simply the input image and N1 defines the patch size. For the “gradient map”, we have p0 = 2,
the maps ζl0 carry the image gradient, and we set N1 = {0}, representing a 1× 1 patch.

Finally, the parameters βk are chosen according to signal processing principles. The purpose of the

filter z →7→ e−(1/β2)‖z‖2
2 is indeed to remove high frequencies from the maps ζlk before subsam-

pling. When downsampling by a factor κ, we simply choose β to be κ times the spacing of two
pixels on ζlk. Similarly, the parameter σ1 when sampling p1 orientations for the “patch maps” is set
to 2π/p1, where p1 = 12 in all our experiments. The parameter σk in (4) is chosen according to a
heuristic rule. We set σk to the 0.1 quantile of the training data ‖ψk−1(z)− ψ′

k−1(z
′)‖2.

Regarding the optimization problem (4), we learn the parameters W,η of the layers from bottom to
top. Stochastic gradient descent (SGD) is a natural candidate for this task since an enormous amount
of training data is available. For the purpose of this paper, we have preferred to use L-BFGS-B [9]
on 300 000 pairs of randomly selected training data points, and initializing the weights W with the
K-means algorithm. L-BFGS-B is a parameter-free state-of-the-art batch method, which is probably
not as fast as SGD, but which is much easier to use. Our goal was to demonstrate the performance
of a new type of convolutional network, and we leave as future work any speed improvement.

4 Experiments

In this section, we present experiments on visual recognition tasks, and start by visualizing the filters
we learn on natural image patches. All experiments were performed using a Matlab implementation,
which will be made available upon publication of the paper, and an L-BFGS-B solver [9], interfaced
in Matlab by Stephen Becker. Since our work is not focused on speed, we run the L-BFGS-B
algorithm for 4 000 iterations, which seems to ensure convergence of the objective function to a
stationary point. The image representations obtained with our convolutional kernel network, repre-
sented by the last map ξk, are used in a linear support vector machine. We use the software package
LibLinear [16] modified to handle dense matrices. The image representations are centered, rescaled
to have unit ℓ2-norm on average, and the parameterC of the SVM is always selected on a validation
set or by 5-fold cross-validation in the range 2i, i = −15 . . . , 15.

4.1 Discovering the Structure of Natural Image Patches

Unsupervised learning was first used for discovering the underlying structure of natural image
patches by Olshausen and Field [23]. Without making any a priori assumption about the data ex-
cept a parsimony principle, the method is able to produce small prototypes that resemble Gabor
wavelets—that is, spatially localized oriented basis functions. The results were found impressive by
the scientific community and their work received substantial attention. It is also known that such
results can also be achieved with CNNs [25]. We show in this section that this is also the case for
convolutional kernel networks, even though they are not explicitly trained to reconstruct data.

Following [23], we randomly select a database of 300 000 whitened natural image patches of
size 12× 12 and learn p = 256 filters W using the formulation (4). We initialize W with Gaussian
random noise without performing the K-means step, in order to ensure that the output we obtain is
not an artifact of the initialization. In Figure 3, we display the filters associated to the top-128 largest
weights ηl. Among the 256 filters, 197 exhibit interpretable Gabor-like structures and the rest was
less interpretable. To the best of our knowledge, this is the first time that the explicit kernel map of
the Gaussian kernel for whitened natural image patches is shown to be related to Gabor wavelets.

Figure 3: Filters obtained by the first layer of the convolutional kernel network on natural images.

7

Tr. CNN Scat-1 Scat-2 CKN-GM1 CKN-GM2 CKN-PM1 CKN-PM2
[31] [18] [19]

size [25] [8] [8] (12/50) (12/400) (200) (50/200)

300 7.18 4.7 5.6 4.39 4.24 5.98 4.15 NA
1K 3.21 2.3 2.6 2.60 2.05 3.23 2.76 NA
2K 2.53 1.3 1.8 1.85 1.51 1.97 2.28 NA
5K 1.52 1.03 1.4 1.41 1.21 1.41 1.56 NA
10K 0.85 0.88 1 1.17 0.88 1.18 1.10 NA
20K 0.76 0.79 0.58 0.89 0.60 0.83 0.77 NA
40K 0.65 0.74 0.53 0.68 0.51 0.64 0.58 NA

60K 0.53 0.70 0.4 0.58 0.39 0.63 0.53 0.47 0.45 0.53

Table 1: Test error in % for various approaches on the MNIST dataset without data augmentation.
The numbers in parentheses represent the size p1 and p2 of the feature maps at each layer.

4.2 Digit Classification on MNIST

The MNIST dataset [22] consists of 60 000 images of handwritten digits for training and 10 000 for
testing. We use two types of initial maps in our networks: the “patch map”, denoted by CNK-PM
and the “gradient map”, denoted by CNK-GM. We follow the evaluation methodology of [25] for
comparison when varying the training set size. We follow Section 3.4 for building the networks. We
select the SVM parameter by 5-fold cross validation when the training size is smaller than 20 000, or
otherwise, we keep 10 0000 examples from the training set for validation. We report in Table 1 the
results obtained for four simple architectures. CKN-GM1 is the simplest one: its second layer uses
3× 3 patches and only p2 = 50 filters, resulting in a network with 5 400 parameters. Yet, it achieves
an outstanding performance of 0.58% error on the full dataset. The best performing, CKN-GM2,
is similar to CKN-GM1 but uses p2 = 400 filters. When working with raw patches, two layers
(CKN-PM2) gives better results than one layer. More details about the network architectures are
provided in the supplementary material. In general, our method achieves a state-of-the-art accuracy
for this task since lower error rates have only been reported by using data augmentation [11].

4.3 Visual Recognition on CIFAR-10 and STL-10

We now move to the more challenging datasets CIFAR-10 [20] and STL-10 [13]. We again follow
Section 3.4 for choosing all parameters. We select the best architectures on a validation set of 10 000
examples from the training set for CIFAR-10, and by 5-fold cross-validation on STL-10 since the
latter only contains 100 training examples per class. We report the results for CKN-GM, defined
in the previous section, without exploiting color information, and CKN-PM when working on raw
RGB patches whose mean color is subtracted. The best selected models have always two layers.
with 800 filters for the top layer. Since CKN-PM and CKN-GM exploit a different information,
we also report a combination of such two models, CKN-CO, by concatenating normalized image
representations together. The standard deviations for STL-10, obtained using the 10 training folds,
was always below 0.7% for our results. Our approach appears to be competitive with the state of
the art, especially on STL-10 where only one method does better than ours, despite the fact that our
models only use 2 layers and require learning few parameters (see supplementary material).

Method [12] [27] [18] [13] [4] [17] [31] CKN-GM CKN-PM CKN-CO

CIFAR-10 82.0 82.2 88.32 79.6 NA 83.96 84.87 74.84 78.30 82.18

STL-10 60.1 58.7 NA 51.5 64.5 62.3 NA 60.04 60.25 62.32

Table 2: Accuracy in % obtained on the CIFAR-10 and STL-10 datasets without data augmentation.

5 Conclusion

In this paper, we have proposed a new methodology for combining kernels and convolutional neural
networks. We show that mixing the ideas of these two concepts is fruitful, since we achieve near
state-of-the-art performance on several datasets such as MNIST, CIFAR-10, and STL10, with simple
architectures and no data augmentation. Some challenges regarding our work are left open for the
future. The first one is the use of supervision to better approximate the kernel for the prediction task.
The second consists in leveraging the kernel interpretation of our convolutional neural networks to
better understand the theoretical properties of the feature spaces that these networks produce.

8

References

[1] Y. Bengio. Learning deep architectures for AI. Found. Trends Mach. Learn., 2009.

[2] L. Bo, K. Lai, X. Ren, and D. Fox. Object recognition with hierarchical kernel descriptors. In Proc.
CVPR, 2011.

[3] L. Bo, X. Ren, and D. Fox. Kernel descriptors for visual recognition. In Adv. NIPS, 2010.

[4] L. Bo, X. Ren, and D. Fox. Unsupervised feature learning for RGB-D based object recognition. In
Experimental Robotics, 2013.

[5] L. Bo and C. Sminchisescu. Efficient match kernel between sets of features for visual recognition. In Adv.
NIPS, 2009.

[6] L. Bottou, O. Chapelle, D. DeCoste, and J. Weston. Large-Scale Kernel Machines (Neural Information
Processing). The MIT Press, 2007.

[7] J. V. Bouvrie, L. Rosasco, and T. Poggio. On invariance in hierarchical models. In Adv. NIPS, 2009.

[8] J. Bruna and S. Mallat. Invariant scattering convolution networks. IEEE T. Pattern Anal., 35(8):1872–
1886, 2013.

[9] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory algorithm for bound constrained optimiza-
tion. SIAM J. Sci. Comput., 16(5):1190–1208, 1995.

[10] Y. Cho and L. K. Saul. Large-margin classification in infinite neural networks. Neural Comput., 22(10),
2010.

[11] D. Ciresan, U. Meier, and J. Schmidhuber. Multi-column deep neural networks for image classification.
In Proc. CVPR, 2012.

[12] A. Coates and A. Y. Ng. Selecting receptive fields in deep networks. In Adv. NIPS, 2011.

[13] A. Coates, A. Y. Ng, and H. Lee. An analysis of single-layer networks in unsupervised feature learning.
In Proc. AISTATS, 2011.

[14] D. Decoste and B. Schölkopf. Training invariant support vector machines. Mach. Learn., 46(1-3):161–
190, 2002.

[15] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. DeCAF: A deep convo-
lutional activation feature for generic visual recognition. preprint arXiv:1310.1531, 2013.

[16] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A library for large linear
classification. J. Mach. Learn. Res., 9:1871–1874, 2008.

[17] R. Gens and P. Domingos. Discriminative learning of sum-product networks. In Adv. NIPS, 2012.

[18] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio. Maxout networks. In Proc.
ICML, 2013.

[19] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What is the best multi-stage architecture for
object recognition? In Proc. ICCV, 2009.

[20] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Tech. Rep., 2009.

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural
networks. In Adv. NIPS, 2012.

[22] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.
P. IEEE, 86(11):2278–2324, 1998.

[23] B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field properties by learning a sparse
code for natural images. Nature, 381(6583):607–609, 1996.

[24] A. Rahimi and B. Recht. Random features for large-scale kernel machines. In Adv. NIPS, 2007.

[25] M. Ranzato, F.-J. Huang, Y-L. Boureau, and Y. LeCun. Unsupervised learning of invariant feature hierar-
chies with applications to object recognition. In Proc. CVPR, 2007.

[26] J. Shawe-Taylor and N. Cristianini. Kernel methods for pattern analysis. 2004.

[27] K. Sohn and H. Lee. Learning invariant representations with local transformations. In Proc. ICML, 2012.

[28] G. Wahba. Spline models for observational data. SIAM, 1990.

[29] L. Wan, M. D. Zeiler, S. Zhang, Y. LeCun, and R. Fergus. Regularization of neural networks using
dropconnect. In Proc. ICML, 2013.

[30] C. Williams and M. Seeger. Using the Nyström method to speed up kernel machines. In Adv. NIPS, 2001.

[31] M. D. Zeiler and R. Fergus. Stochastic pooling for regularization of deep convolutional neural networks.
preprint arXiv:1301.3557, 2013.

[32] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. preprint
arXiv:1311.2901v3, 2013.

9

A List of Architectures Reported in the Experiments

We present in details the architectures used in the paper in Table 3.

Arch. N m1 p1 κ1 m2 p2 S ♯ param

MNIST
CKN-GM1 2 1× 1 12 0.5 3× 3 50 4× 4 5 400
CKN-GM2 2 1× 1 12 0.5 3× 3 400 3× 3 43 200
CKN-PM1 1 5× 5 200 0.5 - - 4× 4 5 000
CKN-PM2 2 5× 5 50 0.5 2× 2 200 6× 6 41 250

CIFAR-10
CKN-GM 2 1× 1 12 0.5 2× 2 800 4× 4 38 400
CKN-PM 2 2× 2 100 0.5 2× 2 800 4× 4 321 200

STL-10

CKN-GM 2 1× 1 12 0.5 3× 3 800 4× 4 86 400
CKN-PM 2 3× 3 50 0.5 3× 3 800 3× 3 361 350

Table 3: List of architectures reported in the paper. N is the number of layers; p1 and p2 represent
the number of filters for each layer; m1 andm2 represent the size of the patches N1 and N2 that are
of size m1 ×m1 and m2 ×m2 on their respective feature maps ζ1 and ζ2; κ1 is the subsampling
factor between layer 1 and layer 2; S is the size of the output feature map, and the last column
indicates the number of parameters that the network has to learn.

10

	Introduction
	Related Work

	Convolutional Multilayer Kernels
	Training Invariant Convolutional Kernel Networks
	Fast Approximation of the Gaussian Kernel
	Approximating the Single-Layer Convolutional Kernel
	Convolutional Kernel Networks
	Practical Implementation: Parameter Setting and Optimization

	Experiments
	Discovering the Structure of Natural Image Patches
	Digit Classification on MNIST
	Visual Recognition on CIFAR-10 and STL-10

	Conclusion
	List of Architectures Reported in the Experiments

