M. A. Arcones and E. Gine, Limit theorems for Uprocesses . The Annals of Probability, pp.1494-1542, 1993.

R. Bouckaert, P. Lemey, M. Dunn, S. J. Greenhill, A. V. Alekseyenko et al., Mapping the Origins and Expansion of the Indo-European Language Family, Science, vol.337, issue.6097, pp.337957-960, 2012.
DOI : 10.1126/science.1219669

J. Bring, A geometric approach to compare variables in a regression model, The American Statistician, vol.50, issue.1, pp.57-62, 1996.

C. Cortes, M. Mohri, and A. Rostamizadeh, Learning non-linear combinations of kernels, Neural Information Processing Systems, 2009.

C. Cortes, M. Mohri, and A. Rostamizadeh, Algorithms for learning kernels based on centered alignment, Journal of Machine Learning Research, vol.13, pp.795-828, 2012.

R. B. Darlington, Multiple regression in psychological research and practice., Psychological Bulletin, vol.69, issue.3, p.161, 1968.
DOI : 10.1037/h0025471

J. Dauxois and G. M. Nkiet, Nonlinear canonical analysis and independence tests, The Annals of Statistics, vol.26, issue.4, pp.1254-1278, 1998.
DOI : 10.1214/aos/1024691242

URL : http://projecteuclid.org/download/pdf_1/euclid.aos/1024691242

K. Fukumizu, F. R. Bach, and A. Gretton, Statistical consistency of kernel canonical correlation analysis, The Journal of Machine Learning Research, vol.8, pp.361-383, 2007.

K. Fukumizu, A. Gretton, X. Sun, and B. Schölkopf, Kernel measures of conditional dependence, Advances in Neural Information Processing Systems, pp.489-496, 2008.

R. J. Gilbertson and D. H. Gutmann, Tumorigenesis in the brain: location, location, location. Cancer research, pp.5579-5582, 2007.

R. D. Gray and Q. Atkinson, Language-tree divergence times support the Anatolian theory of Indo-European origin, Nature, vol.426, issue.6965, pp.426435-439, 2003.
DOI : 10.1038/nature02029

A. Gretton, A simpler condition for consistency of a kernel independence test, 2015.

A. Gretton and L. Gyorfi, Consistent nonparametric tests of independence, Journal of Machine Learning Research, vol.11, pp.1391-1423, 2010.

A. Gretton, O. Bousquet, A. J. Smola, and B. Schölkopf, Measuring Statistical Dependence with Hilbert-Schmidt Norms, Algorithmic Learning Theory, pp.63-77, 2005.
DOI : 10.1007/11564089_7

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Gretton, K. Fukumizu, C. Teo, L. Song, B. Schölkopf et al., A kernel statistical test of independence, Neural Information Processing Systems, pp.585-592, 2008.

A. Gretton, D. Sejdinovic, H. Strathmann, S. Balakrishnan, M. Pontil et al., Optimal kernel choice for large-scale two-sample tests, Advances in Neural Information Processing Systems, pp.1205-1213, 2012.

S. R. Gunn and J. S. Kandola, Structural modelling with sparse kernels, Machine Learning, pp.137-163, 2002.

R. Heller, Y. Heller, and M. Gorfine, A consistent multivariate test of association based on ranks of distances, Biometrika, vol.100, issue.2, pp.503-510, 2013.
DOI : 10.1093/biomet/ass070

W. Hoeffding, Probability Inequalities for Sums of Bounded Random Variables, Journal of the American Statistical Association, vol.1, issue.301, pp.13-30, 1963.
DOI : 10.1214/aoms/1177730491

J. B. Kinney and G. S. Atwal, Equitability, mutual information, and the maximal information coefficient, Proceedings of the National Academy of Sciences, 2014.
DOI : 10.1073/pnas.1309933111

P. Koehn, Europarl: A parallel corpus for statistical machine translation, MT summit, pp.79-86, 2005.

T. Palm, D. Figarella-branger, F. Chapon, C. Lacroix, F. Gray et al., Expression profiling of ependymomas unravels localization and tumor gradespecific tumorigenesis, Cancer, issue.17, pp.1153955-3968, 2009.

C. Peters, M. Braschler, and P. Clough, Multilingual Information Retrieval: From Research to Practice, 2012.
DOI : 10.1007/978-3-642-23008-0

S. Puget, C. Philippe, D. Bax, B. Job, P. Varlet et al., Mesenchymal Transition and PDGFRA Amplification/Mutation Are Key Distinct Oncogenic Events in Pediatric Diffuse Intrinsic Pontine Gliomas, PLoS ONE, vol.26, issue.1, p.30313, 2012.
DOI : 10.1371/journal.pone.0030313.s008

D. Reshef, Y. Reshef, H. Finucane, S. Grossman, G. Mcvean et al., Detecting novel associations in large datasets, Science, issue.6062, p.334, 2011.

D. Sejdinovic, A. Gretton, and W. Bergsma, A kernel test for three-variable interactions, Neural Information Processing Systems, 2013.

D. Sejdinovic, B. Sriperumbudur, A. Gretton, and K. Fukumizu, Equivalence of distance-based and RKHS-based statistics in hypothesis testing, The Annals of Statistics, vol.41, issue.5, pp.2263-2702, 2013.
DOI : 10.1214/13-AOS1140

A. Sen and M. Srivastava, Regression Analysis ? Theory, Methods, and Applications, 2011.

R. J. Serfling, Approximation theorems of mathematical statistics, 1981.

L. Song, A. Smola, A. Gretton, J. Bedo, and K. Borgwardt, Feature selection via dependence maximization, Journal of Machine Learning Research, vol.13, pp.1393-1434, 2012.

G. Székely, M. Rizzo, and N. Bakirov, Measuring and testing dependence by correlation of distances, The Annals of Statistics, vol.35, issue.6, pp.2769-2794, 2007.
DOI : 10.1214/009053607000000505

J. Trommershauser, K. Kording, and M. S. Landy, Sensory Cue Integration, 2011.
DOI : 10.1093/acprof:oso/9780195387247.001.0001

B. Von-bahr, On the Convergence of Moments in the Central Limit Theorem, The Annals of Mathematical Statistics, vol.36, issue.3, pp.808-818, 1965.
DOI : 10.1214/aoms/1177700055

K. Zhang, J. Peters, D. Janzing, B. Schölkopf, and B. , Kernel-based conditional independence test and application in causal discovery, 27th Conference on Uncertainty in Artificial Intelligence, pp.804-813, 2011.