A. Amann, E. Schoell, and W. Just, Some basic remarks on eigenmode expansions of time-delay dynamics, Physica A: Statistical Mechanics and its Applications, vol.373, pp.191-202, 2007.
DOI : 10.1016/j.physa.2005.12.073

R. F. Anderson, Intrinsic parameters and stability of differential-delay equations, Journal of Mathematical Analysis and Applications, vol.163, issue.1, pp.184-199, 1992.
DOI : 10.1016/0022-247X(92)90287-N

L. Arnold, Random Dynamical Systems, 1998.

F. M. Atay and A. Hutt, Stability and Bifurcations in Neural Fields with Finite Propagation Speed and General Connectivity, SIAM Journal on Applied Mathematics, vol.65, issue.2, pp.644-666, 2005.
DOI : 10.1137/S0036139903430884

F. M. Atay and A. Hutt, Neural Fields with Distributed Transmission Speeds and Long???Range Feedback Delays, SIAM Journal on Applied Dynamical Systems, vol.5, issue.4, pp.670-698, 2006.
DOI : 10.1137/050629367

S. Bernard, J. Belair, and M. Mackey, Sufficient conditions for stability of linear differential equations with distributed delay. Discrete Cont, Dyn. Syst. B, vol.1, issue.2, pp.233-256, 2001.

J. Boulet, R. Balasubramaniam, A. Daffertshofer, and A. Longtin, Stochastic two-delay differential model of delayed visual feedback effects on postural dynamics, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.4, issue.2, pp.368423-438, 1911.
DOI : 10.1007/BF00346137

D. Bratsun, D. Volfson, L. S. Tsimring, and J. Hasty, Delay-induced stochastic oscillations in gene regulation, Proc. Natl. Acad. Sci. USA, pp.14593-14598, 2013.
DOI : 10.1073/pnas.0503858102

E. Buckwar, Introduction to the numerical analysis of stochastic delay differential equations, Journal of Computational and Applied Mathematics, vol.125, issue.1-2, pp.297-307, 2000.
DOI : 10.1016/S0377-0427(00)00475-1

S. Campbell and J. Belair, Analytical and symbolically-assisted investigations of hopf bifurcations in delay-differential equations, Canadian Applied Mathematics Quarterly, vol.3, pp.137-154, 1995.

O. Diekmann, S. A. Van-gils, S. M. Lunel, and H. O. Walther, Delay Equations, 1995.
DOI : 10.1007/978-1-4612-4206-2

B. Doiron, M. J. Chacron, L. Maler, A. Longtin, and J. Bastian, Inhibitory feedback required for network oscillatory responses to communication but not prey stimuli, Nature, vol.384, issue.6922, pp.539-543, 2003.
DOI : 10.1126/SCIENCE.274.5288.771

B. Doiron, B. Lindner, A. Longtin, L. Maler, and J. Bastian, Oscillatory Activity in Electrosensory Neurons Increases with the Spatial Correlation of the Stochastic Input Stimulus, Physical Review Letters, vol.93, issue.4, p.48101, 2004.
DOI : 10.1103/PhysRevLett.93.048101

F. Drolet and J. Vinals, Adiabatic elimination and reduced probability distribution functions in spatially extended systems with a fluctuating control parameter, Physical Review E, vol.64, issue.2, p.26120, 2001.
DOI : 10.1103/PhysRevE.64.026120

T. Erneux, Applied Delay Differential Equations. Surveys and Tutorials in the Applied Mathematical Sciences, 2009.

C. Eurich, M. C. Mackey, and H. Schwegler, Recurrent Inhibitory Dynamics: The Role of State-Dependent Distributions of Conduction Delay Times, Journal of Theoretical Biology, vol.216, issue.1, pp.31-50, 2002.
DOI : 10.1006/jtbi.2002.2534

T. Faria and L. Magalhaes, Normal Forms for Retarded Functional Differential Equations with Parameters and Applications to Hopf Bifurcation, Journal of Differential Equations, vol.122, issue.2, p.281, 1995.
DOI : 10.1006/jdeq.1995.1144

B. Ficak and J. Klamka, Stability criteria for a class of stochastic distributed delay systems, Bulletin of the Polish Academy of Sciences: Technical Sciences, vol.61, issue.1, pp.221-228, 2013.
DOI : 10.2478/bpasts-2013-0021

E. Forgoston, L. Billings, and I. B. Schwartz, Accurate noise projection for reduced stochastic epidemic models, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.19, issue.4, p.43110, 2009.
DOI : 10.1063/1.3247350

L. Gammaitoni, P. Hanggi, and P. Jung, Stochastic resonance, Reviews of Modern Physics, vol.70, issue.1, pp.223-287, 1998.
DOI : 10.1103/RevModPhys.70.223

M. Gaudreault, F. Drolet, and J. Vinals, Bifurcation threshold of the delayed van der Pol oscillator under stochastic modulation, Physical Review E, vol.85, issue.5, p.56214, 2012.
DOI : 10.1103/PhysRevE.85.056214

J. K. Hale and S. M. , Introduction to functional differential equations, 1993.
DOI : 10.1007/978-1-4612-4342-7

P. Halmos, Measure Theory, 1974.
DOI : 10.1007/978-1-4684-9440-2

M. Haragus and G. Iooss, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems, 2011.
DOI : 10.1007/978-0-85729-112-7

URL : https://hal.archives-ouvertes.fr/hal-00877080

B. D. Hassard, N. D. Kazarinoff, and Y. N. Wan, Theory and Applications of Hopf bifurcation, 1981.

A. Hutt, Effects of nonlocal feedback on traveling fronts in neural fields subject to transmission delay, Physical Review E, vol.70, issue.5, p.52902, 2004.
DOI : 10.1103/PhysRevE.70.052902

A. Hutt, Additive noise may change the stability of nonlinear systems, EPL (Europhysics Letters), vol.84, issue.3, p.34003, 2008.
DOI : 10.1209/0295-5075/84/34003

URL : https://hal.archives-ouvertes.fr/inria-00401522

A. Hutt and F. M. Atay, Spontaneous and evoked activity in extended neural populations with gamma-distributed spatial interactions and transmission delay, Chaos, Solitons & Fractals, vol.32, issue.2, pp.547-560, 2007.
DOI : 10.1016/j.chaos.2005.10.091

A. Hutt, J. Lefebvre, and A. Longtin, Delay stabilizes stochastic systems near a non-oscillatory instability, EPL (Europhysics Letters), vol.98, issue.2, 2012.
DOI : 10.1209/0295-5075/98/20004

A. Hutt, A. Longtin, and L. Schimansky-geier, Additive Global Noise Delays Turing Bifurcations, Physical Review Letters, vol.98, issue.23, p.230601, 2007.
DOI : 10.1103/PhysRevLett.98.230601

URL : https://hal.archives-ouvertes.fr/inria-00401534

A. Hutt, A. Longtin, and L. Schimansky-geier, Additive noise-induced Turing transitions in spatial systems with application to neural fields and the Swift???Hohenberg equation, Physica D: Nonlinear Phenomena, vol.237, issue.6, pp.755-773, 2008.
DOI : 10.1016/j.physd.2007.10.013

URL : https://hal.archives-ouvertes.fr/inria-00332982

A. Hutt, C. Sutherland, and A. Longtin, Driving neural oscillations with correlated spatial input and topographic feedback, Physical Review E, vol.78, issue.2, p.21911, 2008.
DOI : 10.1103/PhysRevE.78.021911

URL : https://hal.archives-ouvertes.fr/inria-00332994

A. Hutt and L. Zhang, Distributed Nonlocal Feedback Delays May Destabilize Fronts in Neural Fields, Distributed Transmission Delays Do Not, The Journal of Mathematical Neuroscience, vol.3, issue.1, p.9, 2013.
DOI : 10.1016/j.physd.2009.09.022

URL : https://hal.archives-ouvertes.fr/hal-00847168

U. Küchler and B. Mensch, Langevins stochastic differential equation extended by a time-delayed term, Stochastics and Stochastic Reports, vol.111, issue.2, pp.23-42, 1992.
DOI : 10.1080/17442509208833780

R. Lang and K. Kobayashi, External optical feedback effects on semiconductor injection laser properties, IEEE Journal of Quantum Electronics, vol.16, issue.3, p.347, 1980.
DOI : 10.1109/JQE.1980.1070479

J. Lefebvre and A. Hutt, Additive noise quenches delay-induced oscillations, EPL (Europhysics Letters), vol.102, issue.6, p.60003, 2013.
DOI : 10.1209/0295-5075/102/60003

URL : https://hal.archives-ouvertes.fr/hal-00847167

J. Lefebvre, A. Hutt, V. G. Leblanc, and A. Longtin, Reduced dynamics for delayed systems with harmonic or stochastic forcing, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.22, issue.4, p.43121, 2012.
DOI : 10.1063/1.4760250

URL : https://hal.archives-ouvertes.fr/hal-00764986

A. Longtin, F. Moss, and A. Bulsara, Time-interval sequences in bistable systems and the noise-induced transmission of information by sensory neurons, Physical Review Letters, vol.67, issue.5, pp.656-659, 1991.
DOI : 10.1103/PhysRevLett.67.656

S. A. Mohammed and M. K. Scheutzow, The stable manifold theorem for non-linear stochastic systems with memory. I. Existence of the semiflow, Journal of Functional Analysis, vol.205, issue.2, pp.271-305, 2003.
DOI : 10.1016/j.jfa.2002.04.001

S. A. Mohammed and M. K. Scheutzow, The stable manifold theorem for non-linear stochastic systems with memory, Journal of Functional Analysis, vol.206, issue.2, pp.253-306, 2004.
DOI : 10.1016/j.jfa.2003.06.002

S. E. Mohammed, Lyapunov Exponents and Stochastic Flows of Linear and Affine Hereditary Systems, Diffus. Proc. and Rel. Probl. of Anal., II, Stochastic Flows, pp.141-169, 1992.
DOI : 10.1007/978-1-4612-0389-6_7

A. Nitzan, P. Ortoleva, J. Deutch, and J. Ross, Fluctuations and transitions at chemical instabilities: The analogy to phase transitions, The Journal of Chemical Physics, vol.61, issue.3, pp.1056-1074, 1974.
DOI : 10.1063/1.1681974

R. Quesmi, M. A. Babram, and M. L. Hbid, A Maple program for computing a terms of a center manifold, and element of bifurcations for a class of retarded functional differential equations with Hopf singularity, Applied Mathematics and Computation, vol.175, issue.2, pp.932-968, 2006.
DOI : 10.1016/j.amc.2005.08.013

B. Redmond, V. G. Leblanc, and A. Longtin, Bifurcation analysis of a class of first-order nonlinear delay-differential equations with reflectional symmetry, Physica D: Nonlinear Phenomena, vol.166, issue.3-4, pp.131-146, 2002.
DOI : 10.1016/S0167-2789(02)00423-2

A. J. Roberts, Simple examples of the derivation of amplitude equations for systems of equations possessing bifurcations, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics, vol.27, issue.01, pp.48-65, 1985.
DOI : 10.1137/0143052

A. Roxin, N. Brunel, and D. Hansel, Rate Models with Delays and the Dynamics of Large Networks of Spiking Neurons, Progress of Theoretical Physics Supplement, vol.161, pp.68-85, 2006.
DOI : 10.1143/PTPS.161.68

URL : https://hal.archives-ouvertes.fr/hal-00094697

A. Vanderbauwhede and G. Iooss, Center Manifold Theory in Infinite Dimensions, Dyn. Rep, vol.1, pp.125-163, 1992.
DOI : 10.1007/978-3-642-61243-5_4

W. Wang and A. J. Roberts, Slow manifold and averaging for slow???fast stochastic differential system, Journal of Mathematical Analysis and Applications, vol.398, issue.2, pp.822-839, 2012.
DOI : 10.1016/j.jmaa.2012.09.029

T. Weller and B. Hajek, Scheduling nonuniform traffic in a packet-switching system with small propagation delay, IEEE/ACM Transactions on Networking, vol.5, issue.6, pp.813-823, 1997.
DOI : 10.1109/90.650141

W. Wischert, A. Wunderlin, and A. Pelster, Delay-induced instabilities in nonlinear feedback systems, Physical Review E, vol.49, issue.1, 1994.
DOI : 10.1103/PhysRevE.49.203

C. Xu and A. J. Roberts, On the low-dimensional modelling of Stratonovich stochastic differential equations, Physica A: Statistical Mechanics and its Applications, vol.225, issue.1, pp.62-80, 1996.
DOI : 10.1016/0378-4371(95)00387-8

W. Zhen, L. Xiong, and L. Jinzhi, Moment boundedness of linear stochastic delay differential equations with distributed delay, Stoch. Proc. Appl, vol.125, issue.1, pp.586-612, 2014.