The Relationship between Anthropometric Variables and Features of Electromyography Signal for Human-Computer Interface

Angkoon Phinyomark 1 Franck Quaine 1 Yann Laurillau 2
1 GIPSA-SAIGA - SAIGA
GIPSA-DA - Département Automatique, GIPSA-DIS - Département Images et Signal
2 LIG Laboratoire d'Informatique de Grenoble - IIHM
LIG - Laboratoire d'Informatique de Grenoble, Inria - Institut National de Recherche en Informatique et en Automatique
Abstract : Muscle-computer interfaces (MCIs) based on surface electromyography (EMG) pattern recognition have been developed based on two consecutive components: feature extraction and classification algorithms. Many features and classifiers are proposed and evaluated, which yield the high classification accuracy and the high number of discriminated motions under a single-session experimental condition. However, there are many limitations to use MCIs in the real-world contexts, such as the robustness over time, noise, or low-level EMG activities. Although the selection of the suitable robust features can solve such problems, EMG pattern recognition has to design and train for a particular individual user to reach high accuracy. Due to different body compositions across users, a feasibility to use anthropometric variables to calibrate EMG recognition system automatically/semi-automatically is proposed. This chapter presents the relationships between robust features extracted from actions associated with surface EMG signals and twelve related anthropometric variables. The strong and significant associations presented in this chapter could benefit a further design of the MCIs based on EMG pattern recognition.
Type de document :
Chapitre d'ouvrage
Dr. Ganesh Naik. Applications, Challenges, and Advancements in Electromyography Signal Processing, IGI Global, 2014, 9781466660908. 〈10.4018/978-1-4666-6090-8〉
Liste complète des métadonnées

Littérature citée [120 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01006862
Contributeur : Renaud Blanch <>
Soumis le : lundi 16 juin 2014 - 15:55:55
Dernière modification le : jeudi 11 janvier 2018 - 02:04:20
Document(s) archivé(s) le : mardi 16 septembre 2014 - 11:26:42

Fichier

Full_Chapter_3rd.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Angkoon Phinyomark, Franck Quaine, Yann Laurillau. The Relationship between Anthropometric Variables and Features of Electromyography Signal for Human-Computer Interface. Dr. Ganesh Naik. Applications, Challenges, and Advancements in Electromyography Signal Processing, IGI Global, 2014, 9781466660908. 〈10.4018/978-1-4666-6090-8〉. 〈hal-01006862〉

Partager

Métriques

Consultations de la notice

703

Téléchargements de fichiers

370