P. Monk and D. Q. Wang, A least-squares method for the Helmholtz equation, Computer Methods in Applied Mechanics and Engineering, vol.175, issue.1-2, pp.121-136, 1999.
DOI : 10.1016/S0045-7825(98)00326-0

A. Walther, The Ray and Wave Theory of Lenses, 1995.
DOI : 10.1017/CBO9780511470745

P. K. Kythe, An Introduction to Boundary Element Methods, 1995.

I. Babu?ka and S. Sauter, Is the Pollution Effect of the FEM Avoidable for the Helmholtz Equation Considering High Wave Numbers?, SIAM Journal on Numerical Analysis, vol.34, issue.6, pp.2392-2423, 1997.
DOI : 10.1137/S0036142994269186

F. Ihlenburg, Finite Element Analysis of Acoustic Scattering, Applied Mathematical Sciences, vol.132, 1998.
DOI : 10.1007/b98828

M. Rose, Weak-element approximations to elliptic differential equations, Numerische Mathematik, vol.24, issue.3, pp.185-204, 1975.
DOI : 10.1007/BF01436591

I. Babu?ka and I. Melenk, THE PARTITION OF UNITY METHOD, International Journal for Numerical Methods in Engineering, vol.9, issue.4, pp.727-758, 1997.
DOI : 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N

O. Cessenat and D. , Application of an Ultra Weak Variational Formulation of Elliptic PDEs to the Two-Dimensional Helmholtz Problem, SIAM Journal on Numerical Analysis, vol.35, issue.1, pp.255-299, 1998.
DOI : 10.1137/S0036142995285873

W. Desmet, P. Van-hal, P. Sas, and D. Vandepitte, A computationally efficient prediction technique for the steady-state dynamic analysis of coupled vibro-acoustic systems, Advances in Engineering Software, vol.33, issue.7-10, pp.33-527, 2002.
DOI : 10.1016/S0965-9978(02)00062-5

B. Genechten, B. Bergen, D. Vanderpitte, and W. Desmet, A Trefftz-based numerical modelling framework for Helmholtz problems with complex multiple-scatterer configurations, Journal of Computational Physics, vol.229, issue.18, pp.6623-6643, 2010.
DOI : 10.1016/j.jcp.2010.05.016

C. Gittelson, R. Hiptmair, and I. Perugia, -version, ESAIM: Mathematical Modelling and Numerical Analysis, vol.43, issue.2, pp.297-331, 2009.
DOI : 10.1051/m2an/2009002

A. Moiola, R. Hiptmair, and I. Perugia, Plane wave approximation of homogeneous Helmholtz solutions, Zeitschrift für angewandte Mathematik und Physik, pp.809-837, 2011.
DOI : 10.1007/s00033-011-0147-y

R. Hiptmair, A. Moiola, and I. Perugia, -Version, SIAM Journal on Numerical Analysis, vol.49, issue.1, pp.264-284, 2011.
DOI : 10.1137/090761057

URL : https://hal.archives-ouvertes.fr/hal-01108280

X. Feng and H. Wu, Discontinuous Galerkin Methods for the Helmholtz Equation with Large Wave Number, SIAM Journal on Numerical Analysis, vol.47, issue.4, pp.2872-2896, 2009.
DOI : 10.1137/080737538

X. Feng and Y. Xing, Absolutely stable local discontinuous Galerkin methods for the Helmholtz equation with large wave number, Mathematics of Computation, vol.82, issue.283, pp.1269-1296, 2013.
DOI : 10.1090/S0025-5718-2012-02652-4

C. Farhat, I. Harari, and U. Hetmaniuk, A discontinuous Galerkin method with Lagrange multipliers for the solution of Helmholtz problems in the mid-frequency regime, Computer Methods in Applied Mechanics and Engineering, vol.192, issue.11-12, pp.11-12, 2003.
DOI : 10.1016/S0045-7825(02)00646-1

C. Farhat, P. Wiedemann-goiran, and R. Tezaur, A discontinuous Galerkin method with plane waves and Lagrange multipliers for the solution of short wave exterior Helmholtz problems on unstructured meshes, Wave Motion, vol.39, issue.4, pp.307-317, 2004.
DOI : 10.1016/j.wavemoti.2003.12.006

C. Farhat, R. Tezaur, and P. Weidemann-goiran, Higher-order extensions of a discontinuous Galerkin method for mid-frequency Helmholtz problems, International Journal for Numerical Methods in Engineering, vol.42, issue.2, pp.1938-1956, 2004.
DOI : 10.1002/nme.1139

M. Amara, H. Calandra, R. Dejllouli, and M. Grigoroscuta-strugaru, A stable discontinuous Galerkin-type method for solving efficiently Helmholtz problems, Computers & Structures, vol.106, issue.107, pp.106-107, 2012.
DOI : 10.1016/j.compstruc.2012.05.007

URL : https://hal.archives-ouvertes.fr/hal-00768455

M. Grigoroscuta-strugaru, ContributionàContributionà la résolution numérique des probì emes de Helmholtz, 2009.

S. Chaudhry, Efficient Solution Methodology Based on a Local Wave Tracking Strategy for Mid-and High-Frequency Helmholtz Problems, Master's thesis, 2013.

D. E. Goldberg, Genetic Algorithms in Search, Machine Learning, 1989.

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 1992.
DOI : 10.1007/978-1-4614-4942-3

DOI : 10.1142/S0218396X12300010

P. G. Ciarlet, The finite element method for elliptic problems, 1978.

J. M. Melenk and S. Sauter, Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions, Mathematics of Computation, vol.79, issue.272, pp.1871-1914, 2010.
DOI : 10.1090/S0025-5718-10-02362-8

J. M. Melenk and S. Sauter, Wavenumber Explicit Convergence Analysis for Galerkin Discretizations of the Helmholtz Equation, SIAM Journal on Numerical Analysis, vol.49, issue.3, pp.1210-1243, 2011.
DOI : 10.1137/090776202

J. M. Melenk and S. Sauter, General DG-Methods for Highly Indefinite Helmholtz Problems, Journal of Scientific Computing, vol.28, issue.4, pp.536-581, 2013.
DOI : 10.1007/s10915-013-9726-8

M. Amara, R. Djellouli, and C. Farhat, Convergence Analysis of a Discontinuous Galerkin Method with Plane Waves and Lagrange Multipliers for the Solution of Helmholtz Problems, SIAM Journal on Numerical Analysis, vol.47, issue.2, pp.1038-1068, 2009.
DOI : 10.1137/060673230

URL : https://hal.archives-ouvertes.fr/hal-00865802

P. Grisvard, Elliptic problems in nonsmooth domains, 1985.
DOI : 10.1137/1.9781611972030

U. Hetmaniuk, Stability estimates for a class of Helmholtz problems, Communications in Mathematical Sciences, vol.5, issue.3, pp.665-678, 2007.
DOI : 10.4310/CMS.2007.v5.n3.a8

J. L. Lions and E. Magenes, Non-homogeneous Boundary Value Poblems and Applications, 1972.
DOI : 10.1007/978-3-642-65161-8

J. Bowman, T. Senior, P. Uslenghi, and J. Asvestas, Electromagnetic and acoustic scattering by simple shapes, 1970.

O. Schenk and K. Gärtner, Solving Unsymmetric Sparse Systems of Linear Equations with PARDISO, Future Gener, Comp. Sy, vol.20, pp.475-487, 2004.

O. Schenk and K. Gärtner, On fast factorization pivoting methods for symmetric indefinite systems, Elec. Trans. Numer. Anal, vol.23, pp.158-179, 2006.

O. Schenk, M. Bollhoefer, and R. Roemer, On Large-Scale Diagonalization Techniques for the Anderson Model of Localization, SIAM Review, vol.50, issue.1, pp.91-112, 2008.
DOI : 10.1137/070707002

O. Schenk, A. Waechter, and M. Hagemann, Matching-based preprocessing algorithms to the solution of saddle-point problems in large-scale nonconvex interior-point optimization, Computational Optimization and Applications, vol.16, issue.1, pp.36-321, 2007.
DOI : 10.1007/s10589-006-9003-y

J. Phillips and T. Betcke, Adaptive plane wave discontinuous Galerkin Methods for Helmholtz problems, Proceedings of the 10 th In terminational Conference on the Mathematical and Numerical Aspects of Waves, pp.261-264, 2011.