F. Auricchio, L. Beirão-da-veiga, T. J. Hughes, A. Reali, and G. Sangalli, Isogeometric collocation methods, Mathematical Models and Methods in Applied Sciences, vol.20, issue.11, pp.2075-2107, 2010.

F. Auricchio, F. Calabrò, T. Hughes, A. Reali, and G. Sangalli, A simple algorithm for obtaining nearly optimal quadrature rules for NURBS-based isogeometric analysis, Computer Methods in Applied Mechanics and Engineering, 2012.

Y. Bazilevs, L. Beirão-da-veiga, J. A. Cottrell, T. J. Hughes, and G. Sangalli, Isogeometric analysis: Approximation, stability and error estimates for h-refined meshes, Math. Models Methods Appl. Sci, vol.16, issue.07, pp.1031-1090, 2006.

L. Beirão-da-veiga, A. Buffa, J. Rivas, and G. Sangalli, Some estimates for h-p-k-refinement in isogeometric analysis, Numerische Mathematik, vol.118, pp.271-305, 2011.

G. Beylkin and M. Mohlenkamp, Algorithms for numerical analysis in high dimensions, SIAM Journal on Scientific Computing, vol.26, issue.6, pp.2133-2159, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02076682

D. Braess, Finite elements: Theory, fast solvers and applications in solid mechanics, 2007.

J. Bramble and S. Hilbert, Estimation of linear functionals on sobolev spaces with application to Fourier transforms and spline interpolation, SIAM Journal on Numerical Analysis, vol.7, issue.1, pp.112-124, 1970.

S. Brenner and L. Scott, The Mathematical Theory of Finite Element Methods, 2002.

F. Calabrò and C. Manni, The choice of quadrature in NURBS-based isogeometric analysis, Proc. of the 3rd South-East European Conference on Computational Mechanics (SEECCM), 2013.

F. Calabrò, C. Manni, and F. Pitolli, Computation of quadrature rules for integration with respect to refinable functions on fixed nodes, 2014.

P. G. Ciarlet, Finite Element Method for Elliptic Problems, Society for Industrial and Applied Mathematics, 2002.

F. Cirak, M. Ortiz, and P. Schröder, Subdivision surfaces: A new paradigm for thin-shell finite-element analysis, Int. J. Numer. Meth. Engrg, vol.47, pp.2039-2072, 2000.

P. Costantini, C. Manni, F. Pelosi, and M. L. Sampoli, Quasi-interpolation in isogeometric analysis based on generalized B-splines, Computer Aided Geometric Design, vol.27, issue.8, pp.656-668, 2010.

J. A. Cottrell, T. J. Hughes, and Y. Bazilevs, Isogeometric Analysis: Toward Integration of CAD and FEA, 2009.

C. De-boor, Efficient computer manipulation of tensor products, ACM Trans. Math. Softw, vol.5, issue.2, pp.173-182, 1979.

C. D. Boor, A practical guide to splines; rev, 2001.

G. Farin, Curves and surfaces for CAGD: a practical guide, 2002.

C. Giannelli, B. Jüttler, and H. Speleers, THB-splines: The truncated basis for hierarchical splines, Computer Aided Geometric Design, vol.29, pp.485-498, 2012.

H. Gomez, A. Reali, and G. Sangalli, Accurate, efficient, and (iso)geometrically flexible collocation methods for phase-field models, Journal of Computational Physics, vol.262, issue.0, pp.153-171, 2014.

T. Hopkins and R. Wait, Some quadrature rules for Galerkin methods using B-spline basis functions, Computer Methods in Applied Mechanics and Engineering, vol.19, issue.3, pp.401-416, 1979.

T. Hughes, J. Cottrell, and Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Computer Methods in Applied Mechanics and Engineering, vol.194, pp.4135-4195, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01513346

T. Hughes, A. Reali, and G. Sangalli, Efficient quadrature for NURBS-based isogeometric analysis, Computer Methods in Applied Mechanics and Engineering, vol.199, issue.58, pp.301-313, 2010.

A. Karatarakis, P. Karakitsios, and M. Papadrakakis, Computation of the isogeometric analysis stiffness matrix on GPU, Proc. of the 3rd South-East European Conference on Computational Mechanics (SEECCM), 2013.

A. Karatarakis, P. Karakitsios, and M. Papadrakakis, GPU accelerated computation of the isogeometric analysis stiffness matrix, Computer Methods in Applied Mechanics and Engineering, vol.269, issue.0, pp.334-355, 2014.

G. Kuru, C. Verhoosel, K. Van-der-zee, and E. Van-brummelen, Goal-adaptive isogeometric analysis with hierarchical splines, Computer Methods in Applied Mechanics and Engineering, vol.270, issue.0, pp.270-292, 2014.

A. Mantzaflaris and B. Jüttler, Exploring matrix generation strategies in isogeometric analysis, Mathematical Methods for Curves and Surfaces, vol.8177, pp.364-382, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00816141

B. Patzák and D. Rypl, Study of computational efficiency of numerical quadrature schemes in the isogeometric analysis, Proc. of the 18 th Int'l Conf. Engineering Mechanics, EM'12, pp.1135-1143, 2012.

D. Schillinger, L. Dedè, M. Scott, J. Evans, M. Borden et al., An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and t-spline CAD surfaces, Computer Methods in Applied Mechanics and Engineering, vol.249252, issue.0, pp.116-150, 2012.

D. Schillinger, J. Evans, A. Reali, M. Scott, and T. Hughes, Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations, Computer Methods in Applied Mechanics and Engineering, vol.267, pp.170-232, 2013.

D. Schillinger, S. Hossain, and T. Hughes, Reduced Bézier element quadrature rules for quadratic and cubic splines in isogeometric analysis, Computer Methods in Applied Mechanics and Engineering, vol.277, issue.0, pp.1-45, 2014.

L. Schumaker, Spline Functions: Basic Theory, 2007.

G. Strang, Approximation in the finite element method, Numerische Mathematik, vol.19, pp.81-98, 1972.

G. Strang and G. J. Fix, An Analysis of the Finite Element Method, 1973.

A. Vuong, C. Giannelli, B. Jüttler, and B. Simeon, A hierarchical approach to adaptive local refinement in isogeometric analysis, Computer Methods in Applied Mechanics and Engineering, vol.200, issue.4952, pp.3554-3567, 2011.