M. Alaggan, S. Gambs, and A. M. Kermarrec, BLIP: Non-interactive Differentially-Private Similarity Computation on Bloom filters, 14th Int. Symp. on Stabilization, Safety, and Security of Distributed Systems, 2012.
DOI : 10.1007/978-3-642-33536-5_20

URL : https://hal.archives-ouvertes.fr/hal-00724829

K. Kenthapadi, A. Korolova, I. Mironov, and N. Mishra, Privacy via the johnsonlindenstrauss transform. arXiv preprint arXiv, pp.1204-2606, 2012.

C. Dwork, Differential Privacy, In: Int. Conf. on Automata, Languages and Programming . LNCS, vol.4052, pp.1-12, 2006.
DOI : 10.1007/11787006_1

K. Liu, C. Giannella, and H. Kargupta, A survey of attack techniques on privacypreserving data perturbation methods In: Privacy-Preserving Data Mining, Database Systems, pp.359-381, 2008.

K. Chen and L. Liu, A Survey of Multiplicative Perturbation for Privacy-Preserving Data Mining, Privacy-Preserving Data Mining, pp.157-181, 2008.
DOI : 10.1007/978-0-387-70992-5_7

S. Guo and X. Wu, On the use of spectral filtering for privacy preserving data mining, Proceedings of the 2006 ACM symposium on Applied computing , SAC '06, pp.622-626, 2006.
DOI : 10.1145/1141277.1141418

Z. Huang, W. Du, and B. Chen, Deriving private information from randomized data, Proceedings of the 2005 ACM SIGMOD international conference on Management of data , SIGMOD '05, pp.37-48, 2005.
DOI : 10.1145/1066157.1066163

S. Guo and X. Wu, Deriving private information from arbitrarily projected data Advances in Knowledge Discovery and Data Mining, LNCS, vol.4426, pp.84-95, 2007.

D. Agrawal and C. C. Aggarwal, On the design and quantification of privacy preserving data mining algorithms, Proceedings of the twentieth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems , PODS '01, pp.247-255, 2001.
DOI : 10.1145/375551.375602

P. Diaconis and B. Sturmfels, Algebraic algorithms for sampling from conditional distributions, The Annals of Statistics, vol.26, issue.1, pp.363-397, 1998.
DOI : 10.1214/aos/1030563990

A. Dobra, Measuring the disclosure risk for multi-way tables with fixed marginals corresponding to decomposable log-linear models, 2000.

O. Williams and F. Mcsherry, Probabilistic inference and differential privacy, Advances in Neural Information Processing Systems, pp.2451-2459, 2010.

C. Dwork, F. Mcsherry, K. Nissim, and . Smith, Calibrating Noise to Sensitivity in Private Data Analysis, Theory of Cryptography, pp.265-284, 2006.
DOI : 10.1007/11681878_14

C. Dwork, K. Kenthapadi, F. Mcsherry, I. Mironov, and M. Naor, Our Data, Ourselves: Privacy Via Distributed Noise Generation, In: EUROCRYPT, pp.486-503, 2006.
DOI : 10.1007/11761679_29

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

F. Mcsherry and K. Talwar, Mechanism Design via Differential Privacy, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07), pp.94-103, 2007.
DOI : 10.1109/FOCS.2007.66

A. Beimel, K. Nissim, and E. Omri, Distributed Private Data Analysis: Simultaneously Solving How and What, Proc. of Advances in Cryptology, pp.451-468, 2008.
DOI : 10.1007/978-3-540-85174-5_25

Y. D. Li, Z. Zhang, M. Winslett, and Y. Yang, Compressive mechanism, Proceedings of the 10th annual ACM workshop on Privacy in the electronic society, WPES '11, p.3350, 2011.
DOI : 10.1145/2046556.2046581

P. Moulin, Universal fingerprinting: Capacity and random-coding exponents, 2008 IEEE International Symposium on Information Theory, 2008.
DOI : 10.1109/ISIT.2008.4594980

E. Knill, A. Schliep, and D. C. Torney, Interpretation of Pooling Experiments Using the Markov Chain Monte Carlo Method, Journal of Computational Biology, vol.3, issue.3, pp.395-406, 1996.
DOI : 10.1089/cmb.1996.3.395

T. Furon, A. Guyader, and F. Cerou, Decoding fingerprints using the Markov Chain Monte Carlo method, 2012 IEEE International Workshop on Information Forensics and Security (WIFS), pp.187-192, 2012.
DOI : 10.1109/WIFS.2012.6412647

D. Sejdinovic and O. Johnson, Note on noisy group testing: Asymptotic bounds and belief propagation reconstruction, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2010.
DOI : 10.1109/ALLERTON.2010.5707018

P. Meerwald and T. Furon, Toward Practical Joint Decoding of Binary Tardos Fingerprinting Codes, IEEE Transactions on Information Forensics and Security, vol.7, issue.4, pp.1168-1180, 2012.
DOI : 10.1109/TIFS.2012.2195655

C. Robert and G. Casella, Monte Carlo statistical methods, 2004.

J. Lee and C. Clifton, How much is enough? Choosing ? for differential privacy, In: Information Security. LNCS, vol.7001, pp.325-340, 2011.
DOI : 10.1007/978-3-642-24861-0_22

M. S. Alvim, M. E. Andrés, K. Chatzikokolakis, and C. Palamidessi, On the Relation between Differential Privacy and Quantitative Information Flow, In: Int. Conf. on Automata, Languages and Programming, vol.54, issue.1, pp.60-76, 2011.
DOI : 10.1007/978-3-642-00596-1_21

URL : https://hal.archives-ouvertes.fr/inria-00627937