Graph-Cut-Based Model for Spectral-Spatial Classification of Hyperspectral Images

Abstract : We propose a new spectral-spatial method for hyperspectral image classification based on a graph cut. The classification task is formulated as an energy minimization problem on the graph of image pixels, and is solved by using the graph-cut alpha-expansion approach. The energy to optimize is computed as a sum of data and interaction energy terms, respectively. The data energy term is computed using the outputs of the probabilistic support vector machines classification. The second energy term, which expresses the interaction between spatially adjacent pixels, is computed by using dissimilarity measures between spectral vectors, such as vector norms, spectral angle mapper and spectral information divergence. Experimental results on hyperspectral images captured by the ROSIS and the AVIRIS sensors reveal that the proposed method yields higher classification accuracies when compared to the recent state-of-the-art approaches.
Type de document :
Communication dans un congrès
IEEE IGARSS - International Geoscience and Remote Sensing Symposium, Jul 2014, Quebec, Canada. 2014
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01011495
Contributeur : Yuliya Tarabalka <>
Soumis le : mardi 24 juin 2014 - 09:36:36
Dernière modification le : samedi 27 janvier 2018 - 01:31:38
Document(s) archivé(s) le : mercredi 24 septembre 2014 - 10:50:46

Fichier

2014_IGARSS_tarabalka.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01011495, version 1

Collections

Citation

Yuliya Tarabalka, Aakanksha Rana. Graph-Cut-Based Model for Spectral-Spatial Classification of Hyperspectral Images. IEEE IGARSS - International Geoscience and Remote Sensing Symposium, Jul 2014, Quebec, Canada. 2014. 〈hal-01011495〉

Partager

Métriques

Consultations de la notice

345

Téléchargements de fichiers

606