An energy-consistent depth-averaged Euler system: derivation and properties.

Abstract : In this paper, we present an original derivation process of a non-hydrostatic shallow water-type model which aims at approximating the incompressible Euler and Navier-Stokes systems with free surface. The closure relations are obtained by a minimal energy constraint instead of an asymptotic expansion. The model slightly differs from the well-known Green-Naghdi model and is confronted with stationary and analytical solutions of the Euler system corresponding to rotational flows. At the end of the paper, we give time-dependent analytical solutions for the Euler system that are also analytical solutions for the proposed model but that are not solutions of the Green-Naghdi model. We also give and compare analytical solutions of the two non-hydrostatic shallow water models.
Type de document :
Article dans une revue
Discrete and Continuous Dynamical Systems - Series B, American Institute of Mathematical Sciences, 2015, 20 (4), pp.28
Liste complète des métadonnées

https://hal.inria.fr/hal-01011691
Contributeur : Jacques Sainte-Marie <>
Soumis le : lundi 22 août 2016 - 11:12:58
Dernière modification le : jeudi 13 décembre 2018 - 01:28:45
Document(s) archivé(s) le : mercredi 23 novembre 2016 - 11:58:38

Fichiers

euler_av_num_final.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01011691, version 2
  • ARXIV : 1406.6565

Citation

Marie-Odile Bristeau, Anne Mangeney, Jacques Sainte-Marie, Nicolas Seguin. An energy-consistent depth-averaged Euler system: derivation and properties.. Discrete and Continuous Dynamical Systems - Series B, American Institute of Mathematical Sciences, 2015, 20 (4), pp.28. 〈hal-01011691v2〉

Partager

Métriques

Consultations de la notice

471

Téléchargements de fichiers

182