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Abstract

Successful methods for visual object recognition typi-

cally rely on training datasets containing lots of richly an-

notated images. Detailed image annotation, e.g. by object

bounding boxes, however, is both expensive and often sub-

jective. We describe a weakly supervised convolutional neu-

ral network (CNN) for object classification that relies only

on image-level labels, yet can learn from cluttered scenes

containing multiple objects. We quantify its object classi-

fication and object location prediction performance on the

Pascal VOC 2012 (20 object classes) and the much larger

Microsoft COCO (80 object classes) datasets. We find that

the network (i) outputs accurate image-level labels, (ii) pre-

dicts approximate locations (but not extents) of objects, and

(iii) performs comparably to its fully-supervised counter-

parts using object bounding box annotation for training.

1. Introduction

Visual object recognition entails much more than deter-

mining whether the image contains instances of certain ob-

ject categories. For example, each object has a location and

a pose; each deformable object has a constellation of parts;

and each object can be cropped or partially occluded.

Object recognition algorithms of the past decade can

roughly be categorized in two styles. The first style ex-

tracts local image features (SIFT, HOG), constructs bag

of visual words representations, and runs statistical clas-

sifiers [12, 41, 49, 61]. Although this approach has been

shown to yield good performance for image classification,

attempts to locate the objects using the position of the visual

words have been unfruitful: the classifier often relies on vi-

sual words that fall in the background and merely describe

the context of the object.

The second style of algorithms detects the presence of

objects by fitting rich object models such as deformable

part models [19, 59]. The fitting process can reveal useful
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Figure 1: Evolution of localization score maps for the

motorbike class over iterations of our weakly-supervised

CNN training. Note that the network learns to localize ob-

jects despite having no object location annotation at train-

ing, just object presence/absence labels. Note also that lo-

cations of objects with more usual appearance (such as the

motorbike shown in left column) are discovered earlier dur-

ing training.

attributes of objects such as location, pose and constella-

tions of object parts, but the model is usually trained from

images with known locations of objects or even their parts.

The combination of both styles has shown benefits [25].

A third style of algorithms, convolutional neural net-

works (CNNs) [31, 33] construct successive feature vec-

tors that progressively describe the properties of larger and

larger image areas. Recent applications of this framework

to natural images [30] have been extremely successful for a

variety of tasks including image classification [6, 30, 37, 43,

44], object detection [22, 44], human pose estimation [52]

and others. Most of these methods, however, require de-

tailed image annotation. For example bounding box super-
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vision has been shown highly benefitial for object classifi-

cation in cluttered and complex scenes [37].

Labelling a set of training images with object attributes

quickly becomes problematic. The process is expensive and

involves a lot of subtle and possibly ambiguous decisions.

For instance, consistently annotating locations and scales of

objects by bounding boxes works well for some images but

fails for partially occluded and cropped objects. Annotat-

ing object parts becomes even harder since the correspon-

dence of parts among images in the same category is often

ill-posed.

In this paper, we investigate whether CNNs can be

trained from complex cluttered scenes labelled only with

lists of objects they contain and not their locations. This

is an extremely challenging task as the objects may appear

at different locations, different scales and under variety of

viewpoints, as illustrated in Figure 1 (top row). Further-

more, the network has to avoid overfitting to the scene clut-

ter co-occurring with objects as, for example, motorbikes

often appear on the road. How can we modify the structure

of the CNN to learn from such difficult data?

We build on the successful CNN architecture [30] and

the follow-up state-of-the-art results for object classification

and detection [6, 22, 37, 43, 44], but introduce the follow-

ing modifications. First, we treat the last fully connected

network layers as convolutions to cope with the uncertainty

in object localization. Second, we introduce a max-pooling

layer that hypothesizes the possible location of the object in

the image, similar to [32, Section 4] and [28]. Third, we

modify the cost function to learn from image-level super-

vision. Interestingly, we find that this modified CNN ar-

chitecture, while trained to output image-level labels only,

localizes objects or their distinctive parts in training images,

as illustrated in Figure 1. So, is object localization with con-

volutional neural networks for free? In this paper we set out

to answer this question and analyze the developed weakly

supervised CNN pipeline on two object recognition datasets

containing complex cluttered scenes with multiple objects.

2. Related work

The fundamental challenge in visual recognition is mod-

eling the intra-class appearance and shape variation of ob-

jects. For example, what is the appropriate model of the

various appearances and shapes of “chairs”? This challenge

is usually addressed by designing some form of a paramet-

ric model of the object’s appearance and shape. The pa-

rameters of the model are then learnt from a set of instances

using statistical machine learning. Learning methods for vi-

sual recognition can be characterized based on the required

input supervision and the target output.

Unsupervised methods [34, 48] do not require any su-

pervisory signal, just images. While unsupervised learning

is appealing, the output is currently often limited only to

frequently occurring and visually consistent objects. Fully

supervised methods [18] require careful annotation of ob-

ject location in the form of bounding boxes [18], segmenta-

tion [58] or even location of object parts [5], which is costly

and can introduce biases. For example, should we annotate

the dog’s head or the entire dog? What if a part of the dog’s

body is occluded by another object? In this work, we fo-

cus on weakly supervised learning where only image-level

labels indicating the presence or absence of objects are re-

quired. This is an important setup for many practical appli-

cations as (weak) image-level annotations are often readily

available in large amounts, e.g. in the form of text tags [23],

full sentences [38] or even geographical meta-data [15].

The target output in visual recognition ranges from

image-level labels (object/image classification) [23], lo-

cation and extent of objects in the form of bounding

boxes (object detection) [18], to detailed object segmen-

tation [5, 58, 24] or even predicting an approximate 3D

pose and geometry of objects [26, 45]. In this work, we

focus on predicting accurate image-level labels indicating

the presence/absence of objects. However, we also find

that the weakly supervised network can predict the approx-

imate location (in the form of a x, y position) of objects

in the scene, but not their extent (bounding box). Further-

more, our method performs on par with alternative fully-

supervised methods both on the classification and location

prediction tasks. We quantify these findings on the Pascal

VOC 2012[17] and Microsoft COCO [36] datasets that both

depict objects in complex cluttered scenes.

Initial work [2, 8, 11, 20, 57] on weakly supervised ob-

ject localization has focused on learning from images con-

taining prominent and centered objects in scenes with lim-

ited background clutter. More recent efforts attempt to learn

from images containing multiple objects embedded in com-

plex scenes [4, 13, 39, 50, 55, 9], from web images [7, 14]

or from video [42]. These methods typically aim to localize

objects including finding their extent in the form of bound-

ing boxes. They attempt to find parts of images with vi-

sually consistent appearance in the training data that often

contains multiple objects in different spatial configurations

and cluttered backgrounds. While these works are promis-

ing, their performance is still far from the fully supervised

methods such as [22, 44].

Our work is related to recent methods that find distinc-

tive mid-level object parts for scene and object recognition

in unsupervised [47] or weakly supervised [15, 27] settings.

The proposed method can also be seen as a variant of Multi-

ple Instance Learning [21, 29, 54] if we refer to each image

as a “bag” and treat each image window as a “sample”.

In contrast to the above methods we develop a weakly

supervised learning method based on end-to-end training

of a convolutional neural network (CNN) [31, 33] from

image-level labels. Convolutional neural networks have

recently demonstrated excellent performance on a num-

ber of visual recognition tasks that include classification



of entire images [16, 30, 60], predicting presence/absence

of objects in cluttered scenes [6, 37, 43, 44] or localiz-

ing objects by bounding boxes [22, 44]. However, most

of the current CNN architectures assume in training a sin-

gle prominent object in the image with limited background

clutter [16, 30, 35, 44, 60] or require fully annotated ob-

ject locations in the image [22, 37, 44]. Learning from

images containing multiple objects in cluttered scenes with

only weak object presence/absence labels has been so far

mostly limited to representing entire images without explic-

itly searching for location of individual objects [6, 43, 60],

though some level of robustness to the scale and position of

objects is gained by jittering. Recent concurrent effort [56]

also investigates CNNs for learning from weakly labelled

cluttered scenes. Their work confirms some of our findings

but does not investigate location prediction. Our work is

also related to recent efforts aiming to extract object local-

ization by examining the network output while masking dif-

ferent portions of the input image [3, 46, 60, 62], but these

methods consider already pre-trained networks at test time.

Contributions. The contributions of this work are

twofold. First, we develop a weakly supervised convo-

lutional neural network end-to-end learning pipeline that

learns from complex cluttered scenes containing multiple

objects by explicitly searching over possible object loca-

tions and scales in the image. Second, we perform an ex-

tensive experimental analysis of the network’s classification

and localization performance on the Pascal VOC 2012 and

the much larger Microsoft COCO datasets. We find that

our weakly-supervised network (i) outputs accurate image-

level labels, (ii) predicts approximate locations (but not ex-

tents) of objects, and (iii) performs comparably to its fully-

supervised counterparts that use object bounding box anno-

tation for training.

3. Network architecture for weakly supervised

learning

We build on the fully supervised network architecture

of [37] that consists of five convolutional and four fully

connected layers and assumes as input a fixed-size image

patch containing a single relatively tightly cropped object.

To adapt this architecture to weakly supervised learning we

introduce the following three modifications. First, we treat

the fully connected layers as convolutions, which allows us

to deal with nearly arbitrary-sized images as input. Second,

we explicitly search for the highest scoring object position

in the image by adding a single global max-pooling layer at

the output. Third, we use a cost function that can explic-

itly model multiple objects present in the image. The three

modifications are discussed next and the network architec-

ture is illustrated in Figure 2.

Convolutional adaptation layers. The network architec-

ture of [37] assumes a fixed-size image patch of 224×224
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Figure 2: Network architecture for weakly supervised training.
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Figure 3: Multiscale object recognition.

RGB pixels as input and outputs a 1× 1×K vector of per-

class scores as output, where K is the number of classes.

The aim is to apply the network to bigger images in a slid-

ing window manner thus extending its output to n×m×K

where n and m denote the number of sliding window po-

sitions in the x- and y- direction in the image, respectively,

computing the K per-class scores at all input window po-

sitions. While this type of sliding was performed in [37]

by applying the network to independently extracted image

patches, here we achieve the same effect by treating the

fully connected adaptation layers as convolutions. For a

given input image size, the fully connected layer can be

seen as a special case of a convolution layer where the size

of the kernel is equal to the size of the layer input. With

this procedure the output of the final adaptation layer FC7

becomes a 2 × 2 × K output score map for a 256 × 256
RGB input image. As the global stride of the network is

321 pixels, adding 32 pixels to the image width or height

increases the width or height of the output score map by

one. Hence, for example, a 2048× 1024 pixel input would

lead to a 58 × 26 output score map containing the score of

the network for all classes for the different locations of the

input 224 × 224 window with a stride of 32 pixels. While

this architecture is typically used for efficient classification

at test time, see e.g. [44], here we also use it at training time

(as discussed in Section 4) to efficiently examine the entire

1or 36 pixels for the OverFeat network that we use on MS COCO



image for possible locations of the object during weakly su-

pervised training.

Explicit search for object’s position via max-pooling.

The aim is to output a single image-level score for each

of the object classes independently of the input image size.

This is achieved by aggregating the n × m × K matrix of

output scores for n × m different positions of the input

window using a global max-pooling operation into a sin-

gle 1 × 1 × K vector, where K is the number of classes.

Note that the max-pooling operation effectively searches for

the best-scoring candidate object position within the image,

which is crucial for weakly supervised learning where the

exact position of the object within the image is not given at

training. In addition, due to the max-pooling operation the

output of the network becomes independent of the size of

the input image, which will be used for multi-scale learning

in Section 4.

Multi-label classification loss function. The goal of ob-

ject classification is to tell whether an instance of an ob-

ject class is present in the image, where the input image

may depict multiple different objects. As a result, the usual

multi-class mutually exclusive logistic regression loss, as

used in e.g. [30] for ImageNet classification, is not suited

for this set-up as it assumes only a single object per image.

To address this issue, we treat the task as a separate binary

classification problem for each class. The loss function is

therefore a sum of K binary logistic regression losses, one

for each of the K classes k ∈ {1 · · · K},

ℓ( fk(x) , yk ) =
∑

k

log(1 + e−ykfk(x)) , (1)

where fk(x) is the output of the network for input image

x and yk ∈ {−1, 1} is the image label indicating the ab-

sence/presence of class k in the input image x. Each class

score fk(x) can be interpreted as a posterior probability in-

dicating the presence of class k in image x with transforma-

tion

P (k|x) ≈
1

1 + e−fk(x)
. (2)

Treating a multi-label classification problem as K indepen-

dent classification problems is often inadequate because it

does not model label correlations. This is not an issue here

because the classifiers share hidden layers and therefore are

not independent. Such a network can model label correla-

tions by tuning the overlap of the hidden state distribution

given each label.

4. Weakly supervised learning and classifica-

tion

In this section we describe details of the training pro-

cedure. Similar to [37] we pre-train the convolutional fea-

ture extraction layers C1-C7 on images from the ImageNet

dataset and keep their weights fixed. This pre-training pro-

cedure is standard and similar to [30]. Next, the goal is to

train the adaptation layers Ca and Cb using the Pascal VOC

or MS COCO images in a weakly supervised manner, i.e.

from image-level labels indicating the presence/absence of

the object in the image, but not telling the actual position

and scale of the object. This is achieved by stochastic gradi-

ent descent training using the network architecture and cost

function described in Section 3, which explicitly searches

for the best candidate position of the object in the image us-

ing the global max-pooling operation. We also search over

object scales (similar to [40]) by training from images of

different sizes. The training procedure is illustrated in Fig-

ure 2. Details and further discussion are given next.

Stochastic gradient descent with global max-pooling.

The global max-pooling operation ensures that the train-

ing error backpropagates only to the network weights cor-

responding to the highest-scoring window in the image. In

other words, the max-pooling operation hypothesizes the lo-

cation of the object in the image at the position with the

maximum score, as illustrated in Figure 4. If the image-

level label is positive (i.e. the image contains the object)

the back-propagated error will adapt the network weights

so that the score of this particular window (and hence other

similar-looking windows in the dataset) is increased. On the

other hand, if the image-level label is negative (i.e. the im-

age does not contain the object) the back-propagated error

adapts the network weights so that the score of the highest-

scoring window (and hence other similar-looking windows

in the dataset) is decreased. For negative images, the max-

pooling operation acts in a similar manner to hard-negative

mining known to work well in training sliding window ob-

ject detectors [18]. Note that there is no guarantee the lo-

cation of the score maxima corresponds to the true location

of the object in the image. However, the intuition is that the

erroneous weight updates from the incorrectly localized ob-

jects will only have limited effect as in general they should

not be consistent over the dataset.

Multi-scale sliding-window training. The above proce-

dure assumes that the object scale (the size in pixels) is

known and the input image is rescaled so that the object oc-

cupies an area that corresponds to the receptive field of the

fully connected network layers (i.e. 224 pixels). In general,

however, the actual object size in the image is unknown. In

fact, a single image can contain several different objects of

different sizes. One possible solution would be to run mul-

tiple parallel networks for different image scales that share

parameters and max-pool their outputs. We opt for a dif-

ferent less memory demanding solution. Instead, we train

from images rescaled to multiple different sizes. The in-

tuition is that if the object appears at the correct scale, the

max-pooling operation correctly localizes the object in the

image and correctly updates the network weights. When the



Figure 4: Illustration of the weakly-supervised learning procedure. At training time, given an input image with an aeroplane label

(left), our method increases the score of the highest scoring positive image window (middle), and decreases scores of the highest scoring

negative windows, such as the one for the car class (right).

object appears at the wrong scale the location of the maxi-

mum score may be incorrect. As discussed above, the net-

work weight updates from incorrectly localized objects may

only have limited negative effect on the results in practice.

In detail, all training images are first rescaled to have the

largest side of size 500 pixels and zero-padded to 500×500
pixels. Each training mini-batch of 16 images is then re-

sized by a scale factor s uniformly sampled between 0.7

and 1.4. This allows the network to see objects in the im-

age at various scales. In addition, this type of multi-scale

training also induces some scale-invariance in the network.

Classification. At test time we apply the same slid-

ing window procedure at multiple finely sampled scales.

In detail, the test image is first normalized to have its

largest dimension equal to 500 pixels, padded by zeros

to 500 × 500 pixels and then rescaled by a factor s ∈
{0.5, 0.7, 1, 1.4, 2.0, 2.8}. Scanning the image at large

scales allows the network to find even very small objects.

For each scale, the per-class scores are computed for all

window positions and then max-pooled across the image.

These raw per-class scores (before applying the soft-max

function (2)) are then aggregated across all scales by av-

eraging them into a single vector of per-class scores. The

testing architecture is illustrated in Figure 3. We found that

searching over only six different scales at test time was suf-

ficient to achieve good classification performance. Adding

wider or finer search over scale did not bring additional ben-

efits.

5. Classification experiments

In this section we describe our classification experiments

where we wish to predict whether the object is present /

absent in the image. Predicting the location of the object is

evaluated in section 6.

Experimental setup. We apply the proposed method to

the Pascal VOC 2012 object classification task and the re-

cently released Microsoft COCO dataset. The Pascal VOC

2012 dataset contains 5k images for training, 5k for valida-

tion and 20 object classes. The much larger COCO dataset

contains 80k images for training, 40k images for validation

and 80 classes. On the COCO dataset, we wish to evalu-

ate whether our method scales-up to much bigger data with

more classes.

We use Torch7 [10] for our experiments. For Pascal

VOC, we use a network pre-trained on 1512 classes of Ima-

geNet following [37] ; for COCO, we use the Overfeat [44]

network. Training the adaptation layers was performed with

stochastic gradient descent (learning rate 0.001, momentum

0.9).

Pascal VOC 2012 classification results. In Table 1, we

provide classification scores on the Pascal VOC 2012 test

set, for which many baseline results are available. Evalu-

ation is performed via the Pascal VOC evaluation server.

The per-class performance is measured using average pre-

cision (the area under the precision-recall curve) and sum-

marized across all classes using mean average precision

(mAP). Our weakly supervised approach (G.WEAK SUP)

obtains the highest overall mAP among all single network

methods outperforming other CNN-based methods trained

from image-level supervision (C-G) as well as the compara-

ble setup of [37] (B) that uses object-level supervision.

Benefits of sliding-window training. Here we compare

the proposed weakly supervised method (G. WEAK SUP)

with training from full images (F. FULL IMAGES), where

no search for object location during training/testing is per-

formed and images are presented to the network at a sin-

gle scale. Otherwise the network architectures are identi-

cal. Results for Pascal VOC test data are shown in Table 1).

The results clearly demonstrate the benefits of sliding win-

dow multi-scale training attempting to localize the objects

in the training data. The largest improvements are obtained

for small objects, such as bottles and potted plants, where

AP increases by 15-20%. Similar results on the COCO

dataset are shown in the first row of Figure 5, where slid-

ing window weakly supervised training (blue) consistently

improves over the full image training (red) for all classes.

Benefits of multi-scale training and testing. On the

COCO dataset, multi-scale training improves the classifi-

cation mAP by about 1% when compared to training at a

single-scale s = 1. The intuition is that the network gets to



Object-level sup. plane bike bird boat btl bus car cat chair cow table dog horse moto pers plant sheep sofa train tv mAP

A.NUS-SCM [51] 97.3 84.2 80.8 85.3 60.8 89.9 86.8 89.3 75.4 77.8 75.1 83.0 87.5 90.1 95.0 57.8 79.2 73.4 94.5 80.7 82.2

B.OQUAB [37] 94.6 82.9 88.2 84.1 60.3 89.0 84.4 90.7 72.1 86.8 69.0 92.1 93.4 88.6 96.1 64.3 86.6 62.3 91.1 79.8 82.8

Image-level sup. plane bike bird boat btl bus car cat chair cow table dog horse moto pers plant sheep sofa train tv mAP

C.Z&F [60] 96.0 77.1 88.4 85.5 55.8 85.8 78.6 91.2 65.0 74.4 67.7 87.8 86.0 85.1 90.9 52.2 83.6 61.1 91.8 76.1 79.0

D.CHATFIELD [6] 96.8 82.5 91.5 88.1 62.1 88.3 81.9 94.8 70.3 80.2 76.2 92.9 90.3 89.3 95.2 57.4 83.6 66.4 93.5 81.9 83.2

E.NUS-HCP [56] 97.5 84.3 93.0 89.4 62.5 90.2 84.6 94.8 69.7 90.2 74.1 93.4 93.7 88.8 93.2 59.7 90.3 61.8 94.4 78.0 84.2

F.FULL IMAGES 95.3 77.4 85.6 83.1 49.9 86.7 77.7 87.2 67.1 79.4 73.5 85.3 90.3 85.6 92.7 47.8 81.5 63.4 91.4 74.1 78.7

G.WEAK SUP 96.7 88.8 92.0 87.4 64.7 91.1 87.4 94.4 74.9 89.2 76.3 93.7 95.2 91.1 97.6 66.2 91.2 70.0 94.5 83.7 86.3

Table 1: Single method image classification results on the VOC 2012 test set. Methods A,B use object-level supervision. Methods C to G

use image-level supervision only. The combination of methods A and E reaches 90.3% mAP [56], the highest reported result on this data.

Setup Classification Location Prediction

Dataset VOC COCO VOC COCO

H.FULL IMAGES 76.0 51.0 - -

I.MASKED POOL 82.3 62.1 72.3 42.9

J.WEAK SUP 81.8 62.8 74.5 41.2

K.CENTER PRED. - - 50.9 19.1

L.RCNN* 79.2 - 74.8 -

Table 2: Classification and location prediction mean Average Pre-

cision on the validation sets for Pascal VOC and COCO datasets.

*For R-CNN[22], which is an algorithm designed for object de-

tection, we use only the most confident bounding box proposal per

class and per image for evaluation.

see objects at different scales, increasing the overall num-

ber of examples. Scanning at multiple scales at test time

provides an additional 3% increase in classification mAP.

Does adding object-level supervision help classification?

Here we investigate whether adding object-level supervi-

sion to our weakly supervised setup improves classification

performance. In order to test this, we remove the global

max-pooling layer in our model and introduce a “masked

pooling” layer that indicates the location of individual ob-

jects during training. In detail, the masked pooling layer

uses ground truth maps of the same size as the output of

the network, signaling the presence or absence of an object

class to perform the global max-pooling, but now restricted

to the relevant area of the output. This provides learning

guidance to the network as the max-scoring object hypoth-

esis has to lie within the ground truth object location in the

image. We have also explored a variant of this method,

that minimized the object score outside of the masked area

to avoid learning from the context of the object, but ob-

tained consistently worse results. Classification results for

the masked-pooling method (I. MASKED POOL) on both

the Pascal VOC and COCO datasets are provided in Ta-

ble 2 and show that adding this form of object-level super-

vision does not bring significant benefits over the weakly-

supervised learning.

6. Location prediction experiments

The proposed weakly supervised architecture outputs

score maps for different objects. In the previous section we

have shown that max-pooling on these maps provides ex-

cellent classification performance. However, we have also

observed that these scores maps are consistent with the lo-

cations of objects in the input images. In this section we

investigate whether the output score maps can be used to

localize the objects.

Location prediction metric. In order to provide quantita-

tive evaluation of the localization power of our CNN archi-

tecture, we introduce a simple metric based on precision-

recall using the per-class response maps. We first rescale

the maps to the original image size2. If the maximal re-

sponse across scales falls within the ground truth bounding

box of an object of the same class within 18 pixels tolerance

(which corresponds to the pooling ratio of the network), we

label the predicted location as correct. If not, then we count

the response as a false positive (it hit the background), and

we also increment the false negative count (no object was

found). Finally, we use the confidence values of the re-

sponses to generate precision-recall curves. Each p-r curve

is summarized by Average Precision (AP). The perfect per-

formance (AP=1) means that the network has indicated the

presence / absence of the object correctly in all images and

for each image containing the object the predicted object lo-

cation fell inside one of the ground truth bounding boxes of

that object (if multiple object instances were present). This

metric differs from the standard object detection bounding

box overlap metric as it does not take into account whether

the extent of the object is predicted correctly and it only

measures localization performance for one object instance

per image. Note however, that even this type of location

prediction is very hard for complex cluttered scenes consid-

ered in this work.

Location prediction results. The summary of the loca-

tion prediction results for both the Pascal VOC and Mi-

crosoft COCO datasets is given in Table 2. The per-class

results for the Pascal VOC and Microsoft COCO datasets,

are shown in Table 3 (J.WEAK SUP) and Figure 5 (green

bars), respectively.

Center prediction baseline. We compare the location

prediction performance to the following baseline. We use

the max-pooled image-level per-class scores of our weakly

supervised setup (J.WEAK SUP), but predict the center of

the image as the location of the object. As shown in Table 2,

2We do simple interpolation in our experiments.



plane bike bird boat btl bus car cat chair cow table dog horse moto pers plant sheep sofa train tv mAP

I.MASKED POOL 89.0 76.9 83.2 68.3 39.8 88.1 62.2 90.2 47.1 83.5 40.2 88.5 93.7 83.9 84.6 44.2 80.6 51.9 86.8 64.1 72.3

J.WEAK SUP 90.3 77.4 81.4 79.2 41.1 87.8 66.4 91.0 47.3 83.7 55.1 88.8 93.6 85.2 87.4 43.5 86.2 50.8 86.8 66.5 74.5

K.CENTER PRED. 78.9 55.0 61.1 38.9 14.5 78.2 30.7 82.6 17.8 65.4 17.2 70.3 80.1 65.9 58.9 18.9 63.8 28.5 71.8 22.4 51.0

L.RCNN* 92.0 80.8 80.8 73.0 49.9 86.8 77.7 87.6 50.4 72.1 57.6 82.9 79.1 89.8 88.1 56.1 83.5 50.1 81.5 76.6 74.8

Table 3: Location prediction scores on the VOC12 validation set. Maximal responses are labeled as correct when they fall within a

bounding box of the same class, and count as false negatives if the class was present but its location was not predicted. We then use the

confidence values of the responses to generate precision-recall values.
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Figure 5: Per-class barplots of the output scores on the Microsoft COCO validation set. From top to bottom : (a) weakly-supervised clas-

sification AP (blue) vs. full-image classification AP (red). (b) weakly-supervised classification AP (blue) vs. weakly-supervised location

prediction AP (green). (c) weakly-supervised location prediction AP (green) vs. masked-pooling location prediction AP (magenta). At the

bottom of the figure, we provide the object names and weakly-supervised classification AP values.

using the center prediction baseline (K.CENTER PRED.) re-

sults in a >50% performance drop on COCO, and >30%

drop on Pascal VOC, compared to our weakly supervised

method (J.WEAK SUP) indicating the difficulty of the loca-

tion prediction task on this data.

Comparison with R-CNN baseline. In order to provide a

baseline for the location prediction task, we used the bound-

ing box proposals and confidence values obtained with the

state-of-the-art object detection R-CNN [22] algorithm on

the Pascal VOC 2012 validation set. Note that this algo-

rithm was not designed for classification, and its goal is to

find all the objects in an image, while our algorithm looks

only for a single instance of a given object class. To make

the comparison as fair as possible, we process the R-CNN

results to be compatible with our metric, keeping for each

class and image only the best-scoring bounding box pro-

posal and using the center of the bounding box for evalu-

ation. Results are summarized in Table 2 and the detailed

per-class results are shown in Table 3. Interestingly, our

weakly supervised method (J.WEAK SUP) achieves compa-

rable location prediction performance to the strong R-CNN

baseline, which uses object bounding boxes at training time.

Does adding object-level supervision help location pre-

diction? Here we investigate whether adding the object-

level supervision (with masked pooling) helps to better pre-

dict the locations of objects in the image. The results on

the Pascal VOC dataset are shown in Table 3 and show a

very similar overall performance for our weakly supervised

(J.WEAK SUP) method compared to the object-level super-

vised (I.MASKED POOL) setup. This is interesting as it in-

dicates that our weakly supervised method learns to predict

object locations and adding object-level supervision does

not significantly increase the overall location prediction per-

formance. Results on the COCO dataset are shown in Fig-

ure 5 (bottom) and indicate that for some classes with poor

location prediction performance in the weakly supervised

setup (green) adding object-level supervision (masked pool-

ing, magenta) helps. Examples are small sports objects such

as frisbee, tennis racket, baseball bat, snowboard, sports

ball, or skis. While for classification the likely presence of

these objects can be inferred from the scene context, object-

level supervision can help to understand better the underly-

ing concept and predict the object location in the image. We

examine the importance of the object context next.

The importance of object context. To better assess the

importance of object context for the COCO dataset we di-

rectly compare the classification (blue) and location predic-

tion (green) scores in Figure 5 (middle). In this setup a high

classification score but low location prediction score means



Figure 6: Example location predictions for images from the Microsoft COCO validation set obtained by our weakly-supervised method.

Note that our method does not use object locations at training time, yet can predict locations of objects in test images (yellow crosses). The

method outputs the most confident location per object per class. Please see additional results on the project webpage[1].

that the classification decision was taken primarily based on

the object context. Fore example, the presence of a baseball

field is a strong indicator for presence of a baseball bat and

a baseball glove. However, as discussed above these objects

are hard to localize in the image. The kitchenware (forks,

knives, spoons) and electronics (laptop, keyboard, mouse)

superclasses show a similar behavior. Nevertheless, a good

classification result can still be informative and can guide a

more precise search for these objects in the image.

Predicting extent of objects. To evaluate the ability to

predict the extent of objects (not just the location) we also

evaluate our method using the standard area overlap ratio as

used in object detection [17]. We have implemented a sim-

ple extension of our method that aggregates CNN scores

within selective search [53] object proposals. This proce-

dure obtains on the Pascal VOC 2012 validation set the

mAP of 11.74, 27.47, 43.54% for area overlap thresholds

0.5, 0.3, 0.1, respectively. The relatively low performance

could be attributed to (a) the focus of the network on dis-

criminative object parts (e.g. aeroplane propeller, as in Fig-

ure 4) rather than the entire extent of an object and (b) no

max-pooling over scales in our current training procedure.

Similar behavior on discriminative parts was recently ob-

served in scene classification [62].

7. Conclusion

So, is object localization with convolutional neural net-

works for free? We have shown that our weakly supervised

CNN architecture learns to predict the location of objects

in images despite being trained from cluttered scenes with

only weak image-level labels. We believe this is possible

because of (i) the hierarchical convolutional structure of

CNNs that appears to have a bias towards spatial localiza-

tion combined with (ii) the extremely efficient end-to-end

training that back-propagates loss gradients from image-

level labels to candidate object locations. While the ap-

proximate position of objects can be predicted rather reli-

ably, this is not true (at least with the current architecture)

for the extent of objects as the network tends to focus on

distinctive object parts. However, we believe our results are

significant as they open-up the possibility of large-scale rea-

soning about object relations and extents without the need

for detailed object level annotations.
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