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Abstract

The development of adaptive observer techniques for nonlinear systems in the output
canonical form is proposed applying additional impulsive feedback in the observer
equations. The stability of new impulsive adaptive observer is investigated. It is
shown that under some conditions the proposed impulsive feedback can improve the
rate of the observer convergence or relax the requirement on persistency of excitation,
which is usually introduced to ensure convergence of the parameter estimates. The
proposed feasibility conditions include positivity of dwell time (boundedness of impulse
frequency) and solvability of some Lyapunov-like matrix inequalities. The results are
illustrated by simulation for three examples (including a single link flexible joint robot
example).

1 INTRODUCTION

Design of adaptive observers for nonlinear systems was extensively studied dur-
ing the last two decades after [2]. Such an interest was particularly motivated
by possible application of observers to information encoding and transmission.
Typically a chaotic dynamical system is used as a transmitter and its output
signal is changed by its parameter modulation (see special issues [16] and [17]).
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It was shown in [9] that it is possible to build a receiver based on adaptive
observers, which can track output of transmitter and estimate transmitter pa-
rameters under passivity conditions. Several techniques were proposed to design
the adaptive observers [7, 8, 3, 22, 24], for the most part of them based on passi-
fiability property of the observed system under the relative degree one assump-
tion. Other related solutions can be found in [14, 18], where a state feedback
was used for adaptive control construction. The papers [10, 32, 33] overcame
the relative degree limitation for adaptive observer-based communication sys-
tems and extended them to a class of nonpassifiable systems. Other application
areas are nonlinear systems synchronization and control [3, 4, 13, 28, 31]. The
common applicability conditions of the adaptive observer approach include the
output canonical form for the observed system (recently the approach has been
extended to a more general case in [6]) and persistency of excitation conditions.
The former property is hard to guarantee and it is used to prove the convergence
of parameter estimates to their ideal values [10, 32, 33].

The purpose of this work is to relax the applicability conditions via additional
impulsive feedbacks. Recently this idea has been used to improve convergence
rate and quality of estimation of the state observers for nonlinear Lipschitz
systems [29], where the conventional correction term L[y(t) — g(¢)] [20, 27] has
been replaced by the augmented one Ly(t) —§(t)]+ 3525 K[y(t) —§()]6(t —tx)
(6(t) is the Dirac impulse at the time instant ¢ = 0). In the work [1] an adaptive
impulsive observer is studied where the impulses are originated by the sampled
measurements. In the present paper the idea of [29] is borrowed to deal with
the adaptive observer design for the systems presentable in the output canonical
form. As a side of result, the proposed impulsive excitation allows the achievable
in the system level of persistency of excitation to be improved.

The more detailed problem statement is given in Section 2. The main results
are presented in Section 3. The persistency of excitation issue is discussed in
Section 4. The examples of computer simulation illustrate advantages of the
proposed impulsive adaptive observers in Section 5.

2 PROBLEM STATEMENT

Consider the nonlinear system
& =A(y)r+ oy, u) + GW)0 +d, y = Cx, yo =y + v, (1)

where x € R", y € RP, uw € R™, # € R? are respectively the state, the output,
the control input and the vector of unknown parameters; d € R", v € RP are
the disturbances and the measurement noise; the functions A : R? — R™*",
¢ : RPT™ — R™ and G : R? — R"%? are locally Lipschitz continuous; y, €
RP represents the available for a designer vector of noisy measurements. The
Euclidean norm is denoted as |z|, for a matrix | - | gives the corresponding
induced norm, and the symbol ||ul, +) is stated for the L., norm of the input
u(t) (u : Ry — R™ is assumed to be a measurable and locally essentially
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bounded function of time ¢ > 0, as well as other inputs d, v):

[ullo, ) = ess sup |u(t)],
to<t<T

if T = +oo then we will simply write ||u||. Under introduced conditions the
system (1) for any initial condition 2y € R™ has the unique absolutely continuous
solution z(t,xo) defined at least locally in time ¢ > 0 (the symbol x(t) is used
to denote the system (1) solutions if the origin of initial conditions is clear form
the context). In this work we will assume that all signals in (1) are bounded.

Assumption 1. ||u|| < +o0o, [|[v]| < +00, ||d|| < 400 and there is a set X C R"
such that ||z(t, zo)|| < +oo for all o € X.

Note that the set X could be unknown for a designer. Owing to these
conditions there exist constants L4 > 0, Ly > 0 and Lg > 0 (generically
dependent on the initial conditions zg in the system (1) and the matrix C') such
that

|A(y) — Ayo)| < Lalvl, [¢(y, u) — (yo, u)| < Lolv],|G(y) — G(yo)| < Lalvl.

In addition, in this case there is a compact set Y C RP such that y, € Y for all
t > 0. For a matrix P € R™*" A\ ax(P) and Apin (P) denote the maximum and
the minimum eigenvalues respectively.

Taking in mind Assumption 1 and other auxiliary conditions introduced
above it is required to design an adaptive observer that has to provide the state
x and the parameters 6 estimation in the case d = v = 0. For the common case
[|v]| < 400, ||d|| < 400 the estimates have to be bounded.

3 MAIN RESULTS

This section has four parts. First, some preliminary results dealing with per-
sistency of excitation are introduced. Second, the impulsive adaptive observer
equations are presented. Third, the observer stability is proven. Finally, a re-
stricted class of systems is analyzed whose stability conditions can be formulated
in terms of LMIs.

3.1 Persistency of excitation condition

The Lebesgue measurable and square integrable matrix function R : R — R!XF
with the dimension [ x k admits (¢, ¢)-Persistency of Excitation (PE) condition,
if there exist constants £ > 0 and ¥ > 0 such that

t+£
/ R(s)R(s)Tds > 91,
t

for any t € R, where I; denotes the identity matrix of dimension [ x [. Such
a matrix function R is called PE if there are some ¢ > 0, ¢ > 0 such that it is
(¢,9)-PE.
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Lemma 1. Consider a time-varying linear dynamical system
p=—vRORH) p+b(t), to € Ry, (2)

where p € R, v > 0 and the function R : Ry — R™* is continuous and
bounded (i.e. p = sup;sq |R(t)|*> < +<), b: Ry — R! is Lebesgue measurable
and essentially bounded, function R is (¢,9)-PE for some £ >0, ¥ > 0. Then,
for any initial condition p(ty) € R, the solution p(t) of the system is defined for
all t > to and satisfies the following inequality

p— a71 p— p—
Ip()] < Vpale™ 5 0 p(to)| 4+ v~ [B]]

— 1,200 _ -1 9
for a =~n~te*" and n = —0.5¢"'In(1 — 1-5—»727@%2)'
Proof. Since |p| < yplp| + ||b]|, the solutions p(t) are defined for all ¢ > ¢, for
all initial conditions p(tg) € R!. For the case of absence of the external input b
the system (2) can be reduced to the following linear time-varying autonomous
system:

B(t) = A(®)p(t), At) = A(t)" = —R(t)R(t)", (3)
where —ypI; < A(t) < 0 is a continuous and bounded matrix function, 0 < p =
sup;>q | R(t)]* < 400 and |- | is Ly induced matrix norm. Since the matrix A

is negative semidefinite and symmetric, the property |p(7)| > |p(¢)| holds for all
t > 7 >0, ie. the system (3) is Lyapunov stable. For the initial conditions p(¢o)
the system (3) has the solution p(t) = ®(t,to)p(to) for t > to, where ®(t,10)
is the state-transition matrix of (3) [19]. According to the exposition above
e~ 1Pt=to) [, < ®(t,ty) < I for t > to, and our goal is to show that under PE
condition the upper estimate for ®(t,tp) can be replaced with an exponentially
decreasing one.
Consider for the system (3) a Lyapunov function W (p) = 0.5p” p:

W(t)=pt)" A(t)p(t) <0, t >0,

and let us show that the system (3) is globally exponentially stable. For this
purpose note that 0.5|a|? < |b|? + |a — b|? for any a,b € R! and

t
sup |p(to) —p(t)| = sup /p(r)dT
te[to,to+4] telto,to+€] |/ to
t to+4
< sw [l = [ i
tefto,to+4] J to to

the Jensen’s inequality for convex functions gives

to+~4 2 to+4L
[ / |p<t>|dt] < / 1p() 2,
to tO
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and

to+£ to+£
[ bord = 2 [ b0 ROROTROR 0

to to

to+4
< ¥ / p(t)" R(t)R(t)" p(t)dt.

to

Then we obtain

to+4 to+4
/t p(t)TR(t)R(t) p(t)dt > 0~5/t p(to)" R(t)R(t) p(to)dt
to+~4
) [p(to) — p(O)]" R(t)R(t)" [p(to) — p(t)]dt
to+4
> 0.59p(to) " p(to) — p ) [p(to) — p(t)]" [p(to) — p(t)]dt

> 0.59p(to) " pto) — o sup  |p(to) — p(t)|?

te[to,to-+e]

to

to+t 2
> 0.59p(t0) " p(to) — Lp [/ |ﬁ(t)|dt]

to+L
> 0.59p(to) T plto) — / 1p(t)[2dt

to

t0+€
> 0.50p(to) p(to) — +*02° / p(t)” RO R(H) p(t)dt,

to

and finally

to+4 9
/ p®)TRE)R() p(t)dt > W (to).

t0 = 112022
Therefore, W (to+£)—W (to) < —%W(to) and W (tg+¢) < (1—%)W(to)

for any to > 0, then W (tg + ¢) < e 2"W (to) for n = —0.50" 1 In(1 — %)
and for solutions of the system (3) the inequalities are satisfied

e P p(to)| < [p(t)] < e p(te)| Vit > to.

The system (3) is uniformly exponentially stable and e~7°(t=%0) < |®(t,to)| <
e Mt=to=0) for it > t.

Next, following the converse Lyapunov theorem for such a kind of systems
[19], the matrix P(t) = t+oo (7,t)T®(7,t)dr satisfies the differential equation
P(t)+P(t)A(t)+A{t)TP(t)+I; = 0for all t > 0, and V (¢, p) = p” P(t)pis a Lya-
punov function for the system (3). Since 0.5y p~1I; < f:roc e=2r(T=drL <

P(t) < f;roo e~ 21T=t=04qr1; < 0.5n~1e2"]; we have for all p € R%:

0.5y "o~ pl* < V(t,p) < 0.5n~ " e*"|p|*.
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Consider this Lyapunov function V for the system (2) (we will use the fact that
2p" P(t)b(t) < op” P(t)p + 0~ 'b(t)" P(t)b(t) for any ¢ > 0):

v

—p"p+2p" P(t)b(t)
—ne” 2V 4 Le®h(t)T P(t)b(t)
—ne 2V 4 0.5n72e||b| 2.

VARVAN

Then for all t > ¢y the following inequality holds:

p(8)] < /om0 ) (1) | e b))
0

This lemma states that a linear system with a persistently excited time-
varying matrix gain and a bounded additive disturbance has bounded solutions
with exponentially converging bound for transient mode, see Lemma 1 in [23]
or the monograph [26] for related results.

3.2 Impulsive adaptive observer

Inspired by [29] we model the influence of impulses on the adaptive observer
dynamics as an initial condition shift at the instant of the impulse. Thus the
observer equations have two parts. The first one represents the continuous
dynamics proposed in [10, 32, 33|, the second part is event-based and it describes
the discontinuous jump of initial conditions at the instants of impulses ti, k =
1,2,...:

)= Alyo(8)]=(t) + Olyo (t), u()] + Glyo (£)]0(2)
. +Llyo (){yu (1) — C2(1)} — Q1A(),
Q) = {Alyo(t)] — LIy, ()] CYUE) — Glyu (1)),
0(t) = —U)"CT{yu(t) = C=(1)},

te [tkfl,tk); (4)

Q) = {Fyo(tr)] — Klyo (te)]C}Utk),

where z € R™ is the estimate of x, 0 € RY is the estimate of 0, Q € R"*7 is the
auxiliary filtering variable; L : R? — R"*P K : RP — R"*P and F': RP — R™*"
are the locally Lipschitz continuous functional gains of the observer (their values
will be specified in the next section); the initial conditions 2(tJ) = z € R™,
Qtd) = Qo € R, O(to) = Oy € R%, v > 0 is a design parameter. It is
assumed that ¢, £ = 0,1,... is a strictly increasing time sequence satisfying
0=ty <t <ty <..and

{Z(ti) = Flyo(tr)lz(te) + Klyo (tr)[{yo(tr) — C2(te)},

2(tf) = lim z(ty — ), Q) = lim Q(ty, — h).
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Note that for a continuous signal y(t;) = y(t;) = limj, o y(tx—h). It is assumed
that the number of impulses (and, hence, the number of jumps in (5)) can be
finite (then k = 0, N, 0 < N < +0o0) or infinite (limy_ oo tx = +00).

According to the equations (4), (5) the variable 6 has continuous dynamics,
the discontinuity appears in the variables z and €2 only. As it has been observed
in [29] the impulsive event-based part (5) can be easily realized implementing
the observer (4), (5) on a microcontroller, since there any variable can be set to
a desired value at any sampling instant of time.

3.3 Proof of estimation abilities

As in the switched systems theory [21] we will say that the sequence of instants
ty, K = 0,1,... has the dwell-time 7p > 0 if the inequality tx — tx—1 > 7p
is satisfied for all £k = 1,2,.... Note that positivity of dwell time condition is
equivalent to boundedness of frequency of impulses [15].

The first theorem presents the most general conditions of the impulsive adap-
tive observer stability.

Theorem 1. Let Assumption 1 be satisfied, the signals Gy, (t)]* and Q)T CT
be (£,9)-PE for some £ > 0, ¥ > 0 and the sequence of instants ty, k = 0,1, ...
have a dwell-time Tp > 0. If there exist a matric P = PT > 0 with the

dimension n X n and the locally Lipschitz continuous matriz functions L : RP —
R"*P K :RP — R" P, F :RP — R"*" such that

[A(yv) - L(yv)C]TP + P[A(yv) - L(yv)C] < —-vP v >0,
[F(yu) — K(y,)CT" P[F(y0) — K (y,)C] < 0.5uP, pu >0,
for all y, €Y with 0 < p <1 where p = pe "0 then:

1. for any xg € X, z9 € R", Qy € R"*4, 6o € RY the solutions of the system
(1)<(5) are bounded for all t > 0;

2. the following asymptotic estimates are satisfied:
. — O] <al302
Jim 10— 6(2)] <at*|CP2S(|lall 1ol |1l o)),

lim |z(t) = 2()] <H([[[],[[v]], l|d]], |0]),

t——+oo
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where

S(l‘, v, da Q) = D(F‘maxaj + Kmaxva {LAQj + L¢ + LGQ + Lmax}v + d> U)7
H(z,v,d,q) = Q(Fmax® + KmaxV, {Lax + Ly + Lgq + Lmax}v + d, v),

Linax = sup [L(yy)], Frnax = sup I, — F(yo)|, Kmax = sup |[K(y»)],
Yo €Y Yo Yo €Y

Gmax = sup |G(yv)| w( ) \//\max(P)//\min(P)v

Yu €Y

x =207 w(P){1+w(P)V/p/(1 - p)}, a=n~"e?,
n= —2% In(1 — 79
1+ 722(|Clw?(P){|Q(to)| + 2{1 + /15 }Gimax})?
Q(r,p,v) = w(P)*/2/(1 = p)r + xZ(a*|C[* D(r, p,v), E(r,p), XGmax, ;)
Z(q,d, W,v,p) = Giaxq +7W2|C|{|C|(d+ Wq) + v} +p,

D(r,p,v) = X*Graxd|CIE(r,p) + v}, B(r,p) = w(P)*v/2/(1 = p)llrl| + xlIpl.

),

Proof. Define the state estimation error e = x — 2, the parametric estimation
error @ = 6 — 0 and the auxiliary error 6 = e + Q6, whose dynamics from (1)
and (4) have the form for all ¢ € [tr—1,tx), Kk =1,2,...:

é(t) ={Alyo(1)] — Llyo (1) Che(t) + Gly. (1))0(¢ ) Q0(t) + (1), (6)
p(t) ={Aly(1)] = Alyo(O)]}2(t) + o[y (1), u(®)] = ¢lyo
+{Gly()] = Glyo (D]} — Llyu ()]o(t) + (t),

é(t) ={Alyo(t)] = Ly ()IC}S(t) + p(D); (7)
B(t) =792(t)" CT{Ce(t) +v(1)} (8)
= Q(t)TCT{CH(t) — CQ)I(E) + v (D)},

where p € R™. Under Assumption 1 the property
Ipll < {Lallz]| + L + Le|0] + Lmax tH[v]| + [ld]],

holds (this input is bounded), and the equation (8) is actually valid for all ¢ > 0
since the variable § has continuous dynamics only. The errors e and ¢ have
impulse driven discrete dynamics, that from (5) can be written as follows for
any ty, k= 0,1,... (note that z(t;) = z(t})):

e(th) = a(ty) — 2(t) =z (te) — Flyo(tx)]=(tx) (9)
- K[yv (tk>]{yv (tk) CZ( )}
={Flyo ()] — Klyo (t)|Cte(tr) + r(te),

r(tk) =(In = Flyo(te))2(tr) — Klyo (tr)]o(tr),
|l <Fmaxc || + Kmax][v][;

S(t5) = e(t)) + QNI = {Flyo (t)] — Klyo (t:)]CYS(tx) +7(tx),  (10)
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where r € R” is another new disturbing bounded input. From the equations
(4), (7), (10) it is possible to conclude that the variables 2 and ¢ have similar
hybrid dynamics: in the continuous case it is a linear time-varying system with
the matrix gain A(y,) — L(y,)C, the discrete linear time-varying dynamics is
governed by F(y,) — K(y,)C. Both systems have bounded additive inputs. To
prove boundedness of € and ¢ consider the Lyapunov function V(§) = 67 P§
for these variables (for brevity of presentation the variable § is analyzed below).
For all ¢ € [tg_1,tx), k = 1,2, ... from (7) we have:
V(t) =6(t)" ({Alyo ()] = Llyu(D]CY P + P{Aly, (1))
— Lly, (1)]C}é(t) + 25(t)" Pp(1)

<—vV(t) +25()T Pp(t) < —0.50V (t) + 20 p(t)T Pp(t),
which gives the following estimate in the time domain:

V(t) S V(tr)e "™ 4 4u A (PIplf 0 - (11)

According to (10) for all tx, £ = 0,1,... the impulse based behavior of the
function V' (0) yields:

V() = VI[oth)] =20(tx) T {Flyu(te)] — Ky
— Klyo(tr)]C}o(te) +
<uV(ty) + 2r(ty)" Pr

o ()Y P{F[y, ()]
+2r(tk)" Pr(ty)
k) S ( ) + QAmax(P)‘r(tk)F'

(t
Therefore, on the closed interval [tg, tx+1], K = 0,1, ... the Lyapunov function V'
behavior is described by:

V(tisr) SulV (tr)e” "o 0= 4 42 X (PP, o] (12)
+ 2 (P) (1)

Applying the estimate (12) recurrently k + 1 times for k¥ = 0,1,... we obtain
(0 < p=pe 050 < 1):

k
V(t0) <oV (0) + 2Aamax (P71 + 2072l p| ) ) o
i=0

<PV (t0) + 2 max (P)(1 = p) "M {I[711* + 202l |pl ).
Passing back to the variables 2 and 0 we get the estimates for all £k = 0,1, ...:
16(t51)] < w(P){P™PF D5 (t0)| + 2/ (1 = p)[lIr|l + /20~ Ipl[]}
19t 1)) < wP){p™*FV(Q(to)| + 2¢/ 1/ (1 = p)v ™" Ginax}-

Since the inputs p and r are bounded, from (11) the variables Q and ¢ have the
same property for all ¢ > 0, i.e.

[6(5)] < wP){w(P){p"**16(to)] + v/2/(1 = p)llIr]]
+ /2 fpl [ e 20 20 p) ]},
12(8)] < w(P){w(P){p"*[Qto)] +2¢/1/(1 = p)v ™" Gmax e @271 4+ 207 G,
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for all t € [ty,tkt1), K = 0,1,.... It is worth to stress that these estimates hold
independently on the number of impulses (finite or infinite). The differential
equation (8) repeats the form of the system from Lemma 1, additionally from
the theorem conditions and the facts established above all conditions of Lemma
1 are satisfied, that implies boundedness of the variable 0 with the following
upper estimate for all ¢ > 0:

60| < |Cll1QllVale™ " 110(0)] + alC]121/(1C3(E) + v(@)]])]-

Finally, it is required to prove the error e boundedness. This property follows
by analysis of the equations (6), (9) in a manner similar to that performed
for the variables  and ¢ (this approach allows the upper estimates on the
hybrid behavior of the state estimation error to be computed). More simple
way consists in observation that e = § — Q0, where all variables in the right
hand side are bounded, anyway the inequalities hold for all £ = 0,1, ...

le(tif 1) <w(P){p" > Ve(to)] + v/2/(1 = p)llIrll
+ /2 Z(|161], 1811 1121, o], 21T},

and for all t € [tg,tr11), K=0,1,...

e(t)] <w(PY (0% le(to)| + v/2/(1 = p)r|le®2=)
+ 20(PY 2181 1811 11 ol Pl (1 + w(P)y/jaf (T = pe=02¢=00),

Part (i) of the theorem has been proven. From these estimates, asymptotically
the following series of relations hold (independently on finite or infinite number
of impulses):

lim [0(t)] <a'®|CP*_lim ||Q[Fr 4oy {ICI110]]r,400) + 0]}

t—+o00 +oo

<a"?|CPD(Ir[], [Ipll, [[v]]);
tim |e(®)] <Q(||r], [pll, [[ol])-

t——+oo
Substitution in these limit inequalities the upper estimates for p and r gives the
inequalities from the part (ii) of the theorem. O

The proven theorem proposes the conditions under which the posed problem
of an impulsive adaptive observer design is solved. In addition, the asymptotic
estimates are calculated for state and parametric estimation errors (some other
useful estimates are derived in the proof). The conditions of Theorem 1 imply
that the continuous dynamics (the system (4)) is asymptotically stable (v > 0),
while the discrete dynamics (5) could be stable with ;4 < 1 or unstable with
p > 1 under the stability restriction p = pe=°-5"7> < 1 (this condition regulates
the frequency of generation of pulses in (4), (5)). The stability /instability of (4)
and (5) are determined by the choice of L and K respectively. If y > 1, then
the overall hybrid system stability is ensured by a sufficiently long obligatory
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activation of the continuous dynamics (4) increasing the dwell-time value 7p.
The case v < 0 can be considered in the same way under the condition u < 1,
a simple modification of Theorem 1 proof is needed only.

In the case pr > 1 the discrete dynamics (5) excites its continuous-time
counterpart (4). As it will be shown below, such strategy could be rather useful
improving persistency of excitation in the systems. From (5) the choice p >
1 can always provide the fulfillment of PE condition for the signal Q(¢)7C7”.
Contrarily the conventional case [10, 32, 33], here the PE property Q(¢t)7CT
may not follows by the same property of the signal G[y,(¢)]T. This is why in
Theorem 1 the PE property is required for both of them.

Corollary 1. Let all conditions of Theorem 1 hold and v(t) = d(t) = 0 for all
t >0, then

lim 10~ 0(0)| < aFaslall, lim_[2(t) = 2()] < byl

t——+o0

where

a :XQanax|O|w(P)2 \% 2/(1 - p)v

b ={1+ x*(Gmax|C])*¥[L + a7 7|C|Grnax
+ 0! (XGumax)*|CP T (P)*V/2/(1 = p).

Proof. The claim follows by explicit substitution of |[v|]| = ||d|] = 0 in the
estimates from Theorem 1. O

Therefore, the impulsive adaptive observer (4), (5) has a steady-state error
proportional to the amplitude Fiax||x||- To solve this accuracy problem one
can use the matrix function F(y,) = I, as it has been done in [29], in this
case Fihax = 0 and the exact asymptotic state and parameters estimation is
guaranteed in (4), (5):

Jim (06| =0, lim_[x(1) — =(0)] = 0.
However, in the case F(y,) = I, it is rather difficult to ensure the Schur stability
of the matrix F(y,) — K(y,)C (actually it is possible if the whole state vector
of (1) is available for measurements, i.e. C = I,). However instability of
F(y,) — K(y,)C is not a restriction if the system excitation is needed, see
Section 4 below, where for F'(y,) = I,, and an unstable matrix F'(y,) — K (y,)C
the possibility to improve PE property is discussed.

3.4 Simplified case

The matrix function inequalities, formulated in Theorem 1 to calculate the
observer gains L, K, F, are rather hard to solve (since they depend on the
variable y,). Introducing supplementary constraints on the form of the system
(1) it is possible to formulate these conditions in terms of LMIs.
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Theorem 2. Let Assumption 1 be satisfied and A(y) = A in (1) and (4). Let
the sequence of instants ty, k = 0,1,... have the dwell-time Tp > 0 and the
signals Gy, (t)]T and Qt)TCT be (¢,9)-PE for some £ > 0, ¥ > 0. If there
ezist a matriz P = PT > 0 with dimension n x n and L(y,) = L, K(y,) = K,
F(y,) = F such that:

[A— LO)'P + P[A— LC) < —vP,v >0,
[F — KOJ'P[F — KC] < 0.5uP, 1> 0,
with 0 < p < 1 where p = pe=%°*0  then:

1. for any 29 € X, z9 € R, Qy € R"*4, 0o € RY the solutions of the system
(1)-(5) are bounded for all t > 0;

2. the following asymptotic estimates are satisfied:

lim 6 —0(t)| <a*®|C12S(||al], [[oll, lld]], 6]),

t—-+oo

Jm |z (t) = 2@ <H ([lz]], [[o]], [1d]], [6]),
where
S(x,v,d,q) =D(|I, — Flz + |K|v,{Ly + Laq + |L|}v + d,v),
H(z,v,d,q) =Q(|I, — F|lz + |K|v,{Ls + Lag + |L|}v + d,v),
and the functions Q(r,p,v), D(r,p,v) have been defined in Theorem 1.

Proof. Dynamics of the state estimation error e = x — 2, the parametric esti-
mation error § = 6 — 6 and the auxiliary error § = e 4+ Q20 can be presented for
all t € [tg—1,tx), k = 1,2, ... in the following form:

é(t) ={A — LC}Ye(t) + Glyu (0]6(t) — QB() + p(1), (13)
p(t) =ly(t), u(t)] — oly. (1), u()] + {Gly(D)] - Gly (D]}0 — Lo(t) + d(t):

5(t) ={A - LCY3(t) + p(t); (14)
6(t) =9 Q(1)"CT{Ce(t) + v(1)) (15)

=1(t)TCT{C5(t) — CQ)O(t) + v (D)},

where p € R™ is a new disturbing input as before. Under Assumption 1 the
property
Ipll < {Le + Lal0] + LI} o]l + [ld]],

holds, and the equation (15) is actually valid for all ¢ > 0 since the variable 6
has continuous dynamics only. The errors e and ¢ have impulse driven discrete

dynamics, that from (5) can be written as follows for any tx, k = 0,1, ... (note
that x(ty) = z(t))):
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e(tf) = a(tf) — 2(t]) =a(tr) — Fz(te) — K{yo(ts) — Cz(tr)} (16)
={F = KCle(ty) + (i),

r(te) =(In = Fa(ty) = Ko(ty), [[r]] < [In = Fll|z]| + [K]||v]];

S(t) =e()) + Q) = {F - KC}o(t) +r(te),  (17)

where r € R™ is another disturbing bounded input. To prove boundedness of

Q and ¢ consider the Lyapunov function V(§) = §7 P§ for these variables (for

brevity the variable § is analyzed below). From (14)

V(t) =6(t)" ({A— LCY P+ P{A — LCY}) §(t) + 20(t)" Pp(t)
<— vV () +25()T Pp(t) < —0.50V () + 20 tp(t)T Pp(t)

for all t € [tx—1,tk), & = 1,2,..., which gives the estimate (11) in the time

domain as in Theorem 1 proof. According to (17) for all t5, & = 0,1, ... the
impulse based behavior of the function V(§) yields:
V(tE) = VISt =258(t,) " {F — KCY' P{F — KC}é(tx) + 2r(tx)" Pr(ts)

<pV () + 2r(te) " Pr(tr) < pV (tk) + 2Amax (P)|r(tx)]*.

Therefore, on the closed interval [tg, tx+1], K = 0,1, ... the Lyapunov function V
transformation is described by the expression (12). The rest part of the proof
coincides with the same from Theorem 1.

The main difference between theorems 1 and 2 conditions consists in the use
of matrix inequalities in Theorem 2, these inequalities can be represented as
LMIs, then they can be resolved with respect to P, L, K, F. The conditions of
existence of a transformation of (1) to a form with A(y) = A are given in [25].

4 PERSISTENCY OF EXCITATION

Another difference between the theorems 1 and 2 could be in the use of the PE
condition. Indeed, according to (4) the variable Q2 dynamics is described by a
linear time-invariant system in the case of Theorem 2, then the PE properties
of the signals Q(t)T and Q(t)7C7T follow by the input excitation [11, 12]. The
proof of this claim for the matrix variables and impulsive dynamics is given in
the next subsection using several lemmas. The PE condition improvement in
impulsive adaptive observers is discussed in the second subsection.

In this section we will always assume that A(y) = A and G(t) = Gly,(t)] is
bounded.

4.1 Input-output PE in the impulsive linear systems

The first two lemmas deal with the case of continuous dynamics (4) only.
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Lemma 2. Let the matriv A — LC be Hurwitz. The signal G(t)T is (¢,9)-PE
for some £ > 0, 9 > 0 if and only if there exist some ¢’ > 0, 9 > 0 such that
the signal Q)T is (¢',9")-PE in (4).

Proof. Since the matrix A— LC is Hurwitz, the system (4) solutions are globally
defined and bounded for all + € R. By contrary, if the signal G(t)7 is not PE,
then for some vector ¢ € RY, all ¢t € R and any € > 0 there exists £ > 0 such
that

t+L
/ PG TG(r)¢dr < e.
t

This property implies that the vector signal G(t)¢ is asymptotically convergent.
Multiplying the equation (4) by the vector ¢ we obtain:

b ={A-LC} - G(t)¢, & =, (18)

therefore, the signal ¥ (¢) is also asymptotically convergent. Then for all ¢ € R
and any ¢ > 0 there is £’ > 0 such that

t+L' t+L’
/t CTO(r)TQ(r)Cdr = / B(r)Tp(r)dr < e.

Consequently, the signal Q(¢)7 also is not PE.
Now, let the signal Q(¢)7 be not PE, then for some vector ¢ € RY, for all
t € R and any € > 0 there is £ > 0 such that

t+L
/ cra(m)Ta(r)¢dr <e.

Owing to this inequality, the input G(t)¢ asymptotic convergence follows from
(18) and stability of the matrix A — LC"

t
P(t) = e (0) + / A EOEIG(r)¢dr.
0

Then, for all t € R and any € > 0 there is £’ > 0 such that

t+L’
/ CTG(T)TG(T)CdT <e
t

and the signal G(t)7 is not PE. We have proven that if one of the signals Q(¢)7
or G(t)T is not PE, then anther one fails to possess this property, and vice versa.
Negation of this result gives the lemma claim. O

Lemma 3. Let the matriz A— LC be Hurwitz, the pair of matrices (A— LC,C')
be observable and the signal G(t)T be (¢,9)-PE for some ¢ > 0, ¥ > 0. Then
there are some £' > 0, ¥ > 0 such that Q(t)TCT is (¢',9")-PE in (4).



4 PERSISTENCY OF EXCITATION 15

Proof. Let
c
C(A-LC)
R = . ’
C(A—LC)" !
be the observability matrix that has rank n by the lemma conditions. Define the

new variable © = RQ and S = R(A — LC)R™!, then the system (4) dynamics
can be presented in the observer canonical form:

© =250+ RG(t), t e R. (19)

Since the matrix R has full rank, applying the same arguments as for the proof
of Lemma 2 we can substantiate that, the signal G(t)T is (¢,9)-PE if and only
the signal ©(¢)7 is (¢,9')-PE for some ¢ > 0, ¥ > 0, ¢/ > 0, ¥ > 0. Since the
signal CQ(t) is represented by the first elements of the signal ©(t), the claim
follows. O

The next lemma analyzes PE conditions in the impulse driven system (4),
().

Lemma 4. Let the sequence of instants ty, k = 0,1,... have the dwell-time
7p > 0 and there exist matrices P = PT >0, L, K, F such that:

[A— LO)'P + P[A— LC) < —vP,v >0,
[F — KC|'P[F — KC] < P,
with 0 < p < 1 where p = pe=%°*72 . The signal G(t)T = G[y,(t)|T is (¢,9)-PE

for some £ > 0, 9 > 0 if and only if there exist some ¢ > 0, ¥ > 0 such that
the signal Q)T is (¢',9")-PE in (4), (5).

Proof. Again assume that the signal G(¢)7 is not PE, then for some vector
C€eR? all t € R and any € > 0 there exists £ > 0 such that

t+L
/ TG G(r)Cdr < .
t

This property implies that the vector signal G(t)¢ is asymptotically convergent.
Multiplying the equation (4), (5) by the vector ¢ we obtain for ¢y = Q¢ and
ft) = G()¢:

G(t) ={A = LCY(t) = f(1), t € [thstig), k= 0,1, (20)
Consider the Lyapunov function V (v)) = T Py, for all t € [t,_1,tx), k= 1,2, ...
from (20) we have:

V() =0()" ({A— LCYTP + P{A - LC}) (t) — 20(0) PS(2)
< — vV (t) = 20(t)" Pf(t) < 050V () + 207 f(1) T P(1),
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that gives the following estimate in the time domain:
V(t) < V(tk)e_OﬁV(t_tk) + 4V_2>‘maX(P)||f||[2tk,tk+1)- (22)

According to (21) for all tx, &k = 0,1,... the impulse based behavior of the
function V(v) yields:

V(th) = VIv(th)] = v(t) " {F — KCY P{F — KC}y(tr) < uV (t).

Therefore, on the closed interval [tx, tx+1], K = 0,1, ... the Lyapunov function V/
transformation is described by the following expression:

V(tz-u) < N[V(tk)e_o'w(tkﬂ_tk) + 4V_2)‘maX(P)||f||[2tk,tk+1)]' (23)

Applying the estimate (23) recurrently k + 1 times for & = 0,1,... we obtain
(0 < p=pe 050 < 1):

k
V(ti,) <"V (1) + 4>\max(P)V72H’||f‘|[2t07tk+1] sz
i=0

<PV (t0) + Dmax (P = )"0 2| F1R 1y
Taking in mind (22) for all £ = 0,1,... and t € [y, ;1) the estimate
V(1) <{0" V() + Whnax(PYA = p) 0l 1 1, o007
+ 4V72)\max(P)||f|‘[th,thrl)

holds, therefore for 0 < p < 1 and v < 0 with a convergent input f the variable
¥ is bounded and asymptotically converging (independently on the number of
impulses finite or infinite). Then for all t € R and any € > 0 there exists £’ > 0
such that

t+L' t+L’
/t TN Cdr = /t W) (r)dr < e

Consequently, the signal Q(¢)T also is not PE.
Conversely, let the signal 2(¢)7 be not PE, then for some vector ¢ € R?, for
all t € R and any ¢ > 0 there exists £ > 0 such that

t+L
/ cFa(mTa(r)¢dr <e.

For the system (20), (21) this is equivalent to the input f asymptotic conver-
gence. Indeed, the system (20) is time-invariant linear asymptotically stable
system with the additive input f (as in Lemma 2 proof the convergences of v
and f are strictly interconnected), inclusion of the discrete dynamics (21) gives
for all t € [ty,tr11), K =0,1,...:

t
'(/J(t) — e(A—LC)(t—tk)wk +/ e(A_LC)(t_T)G(T)CdT; (24)

tr

Yo = 1(0), v = (F — KC)ip(ty) Vk = 1,2, ....
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Then the variable 1(t) convergence implies the same property for the convolu-
tion integral in (24). Therefore, for all ¢ € R and any € > 0 there exists £ > 0
such that

t+L’
/ CTG(T)TG(T)CdT <e
t

and the signal G(¢)7 is not PE. We have proven that if one of the signals Q(¢)”
or G(t)T is not PE, then anther one fails to possess this property in the hybrid
system (4), (5). The claim of Lemma 4 follows by this result negation. O

If the pair of matrices (A — LC, C) is observable, then combining lemmas
3 and 4 the PE property of the signal Q(¢t)7C? can be deduced from PE of
Gly,(t)]T for the system (4), (5). Thus in the conditions of Theorem 2 it is
enough to check the PE property for the signal G[y,(t)]” only (provided that
the pair of matrices (A — LC, C) is observable).

4.2 PE improvement in impulsive adaptive observers

The last thing to show is that under some restrictions the hybrid system (4),
(5) may ensure better excitation than the conventional continuous dynamics
(4) alone. In order to show this, note that the PE condition for the signal
Q(t)TCT corresponds to strict positive definiteness of the following integral for
some £ > 0,9 >0 and all t € R:

t+£
/ QnrctoQ(r)dr > 91,
¢

which left hand side can be interpreted as the Ly norm of the signal C2(t) on
interval [t,t + ¢]. The system (4) solution €(t) is described by

t
Q(t) = A LOEII0 1) + / AL Gy, ()] dr

ty

for all ¢ € [tg,tr41). This solution has the decaying part proportional to the
initial conditions Q(t;) and the forced part governed by G[y,(t)], that ensures
the PE property for Q(¢)7. If the matrix F' — K C has all singular values bigger
than 1 and #5411 —tx < £ for all K =0,1,..., then

Q)] = [(F = KC)Q(tr)| > [2(te)]

and the Ls norm of the signal CQ)(¢) has to be augmented accordingly for ¢ > .
The dwell-time stability conditions developed in theorems 1 and 2 ensure the
overall system stability in this case.

This proposed strategy has the following interpretation: if a designer cannot
excite explicitly the system (1) (improving the PE property), then it is pos-
sible to excite the observer equations by proper impulses, which also leads to
amplification of the level of excitation and quality of the parameter estimation.
Thus the hybrid system (4), (5) improves PE abilities of the signal G[y,(¢)].
Tllustrations of this conclusion are given below on four examples.
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Fig. 1: The results of simulation for the linear example

5 SIMULATION

In this section we will analyze three examples. The first one (a simple linear
first order system) is given to clearly demonstrate advantages and peculiarities
of the proposed observer. The next two examples are nonlinear systems of the
third and fourth orders respectively.

5.1 A linear system

Consider a conventional linear benchmark example in the adaptive control the-
ory:
T=—x+0x,y=umz.

We will assume that the system is stable and therefore # < 1. Then z(¢) is
exponentially converging and the system has no PE property. The results of
application of the conventional adaptive observer [10, 32, 33] with L(y) = 1,
v = 10 to this system are shown in Fig. 1 by the blue dash lines. In Fig. 1,a
the estimation error is plotted, in Fig. 1,b the variable é(t) is presented, an
estimation of the PE property is shown in Fig. 1,c:

b(t):/o Q(T)TQ(T)dT.

The same trajectories for the impulsive adaptive observer (4), (5) with L(y) = 1,
K(y) = —10, F(y) = 1 and 7p = 3 are shown in Fig. 1 by the red solid lines.
As it is possible to conclude from these results, the application of additional
impulsive feedbacks with unstable F' — KC' leads to PE improvement.

5.2 Lorenz chaotic model

Another example deals with the Lorenz system observation [10]:

1 =0(xe — 1) = (r+ 0)x1 — 22 — 21233 &3 = —Pas + 122,y = 21,
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Fig. 2: The results of simulation for the Lorenz system

which for o = 10, 8 = 8/3, r = 97, § = 0 demonstrates a chaotic behavior. For
some small |0] the system still has a similar behavior, that implies PE property
for the Lorenz system on the strange attractor. The results of application of
the conventional adaptive observer [10, 32, 33] with L(y) = [0 7 + o 0T, v =
100 to this system are shown in Fig. 2 by the blue dash lines. In Fig. 2a
the estimation error norm |e(t)| is plotted, in Fig. 2,b the variable 6(t) is
presented, the estimation b(t) of the PE property is shown in Fig. 2,c. The same
trajectories for the impulsive adaptive observer (4), (5) with L(y) = [0 r+0o 0]7,
K(y) = —15[1 1 1]7, F(y) = I3 and 7p = 0.625 are shown in Fig. 2 by the
red solid lines (in this case P = I3 in Theorem 1, all conditions of this theorem
are satisfied). As it is possible to conclude from these results, the application
of additional impulsive feedbacks with unstable matrix F' — KC leads to PE
property improvement. However, in this case since the PE property is strongly
presented in the system such improvement is not significant.

5.3 A single-link flexible joint robot

The third example deals with a single-link flexible joint robot estimation [5, 30],
where due to joint flexibility the system nonlinearities are modeled as a stiffening
torsional spring and the gravitational force. Denoting by ¢, wm, ¢ and wy,
the motor and link position and velocities respectively, the equations are given
by

Pm = W, Wm = anl(T(‘PmaSal) — Bwm + K:u), y1 = @1

Q1= wi, &= —J; (T (pm, 1) + mghsin(er)), y2 = om,
where J,, is the inertia of the motor, J; is the inertia of the link, 2h and m
represent the length and mass of the link, B is the viscous friction, and K is

the amplifier gain; 7(¢um, 01) = 01(1 — ©m) + 02(01 — ©m)? is the load torque,
the coefficients 61, 6> are unknown. The physical values of parameters are the
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0 5 10 15

Fig. 3. The results of simulation for the robot example

following

Jm =37%x1073, J; =9.3x 1073, h =0.15, m = 0.21, B = 0.046,
K, =0.08 g=98, 6, =0.2, §, =0.1.

The control u(t) = 0.1sin(t) ensures a weak PE property in the system. The
results of application of the conventional adaptive observer [10, 32, 33] with

T
1100
{0011}”0'1

to this system are shown in Fig. 3 by the blue dash lines. In Fig. 3,a the
estimation error norm |e(t)| is plotted in logarithmic scale, in Fig. 3,b the
variable 6(t) is presented, the estimation a(t) = Amin(b(t)) of the PE property
is shown in Fig. 3,c. The same trajectories for the impulsive adaptive observer
(4), (5) with

L(y)

T T
101 1 01
] K@) =051 610 01 0 |

F(y) = Iy and 7p = 1.5 are shown in Fig. 3 by the red solid lines (in this
case P = I, in Theorem 2, all conditions of this theorem are satisfied). As
it is possible to conclude from these results the additional impulsive feedbacks
with unstable matrix F' — K C' leads to PE property improvement and a better
estimation.

10 0
L(y):[0011

6 CONCLUSION

The paper presents an approach for impulsive adaptive observer design. The ad-
ditional impulsive feedback is easy to implement complementary to the scheme
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of conventional adaptive observers proposed in [10, 32, 33, 3]. Different stability
conditions are proposed, some of them assumes stability of the continuous-time
loop of the observer and instability of the impulsive feedbacks. It is shown that
such unstable impulses additionally excite the observer dynamics improving PE
property of the system (in all cases the overall stability of the hybrid system is
guaranteed). In other words, the idea of the approach is as follows: if it is not
possible to excite explicitly the system (improving the PE property directly),
then it is possible to excite the observer equations augmenting the level of ex-
citation available for identification. The efficiency of the proposed approach
is demonstrated by computer simulations for three examples. On examples of
weakly excited systems the impulsive adaptive observer has shown superior re-
sults over the conventional one, for chaotic systems (which dispose a proper
sufficient level of excitation) the improvement introduced by impulsive adaptive
observer is minor but remarkable.
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