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Dynamic Block-Based Parameter Estimation for

MRF Classification of High-Resolution Images
Hossein Aghighi, Student Member, IEEE, John Trinder, Yuliya Tarabalka, Member, IEEE, and Samsung Lim

Abstract—A Markov random field is a graphical model that
is commonly used to combine spectral information and spatial
context into image classification problems. The contributions of
the spatial versus spectral energies are typically defined by using
a smoothing parameter, which is often set empirically. We propose
a new framework to estimate the smoothing parameter. For this
purpose, we introduce the new concepts of dynamic blocks and
class label cooccurrence matrices. The estimation is then based
on the analysis of the balance of spatial and spectral energies
computed using the spatial class co-occurrence distribution and
dynamic blocks. Moreover, we construct a new spatially weighted
parameter to preserve the edges, based on the Canny edge de-
tector. We evaluate the performance of the proposed method on
three data sets: a multispectral DigitalGlobe WorldView-2 and two
hyperspectral images, recorded by the AVIRIS and the ROSIS sen-
sors, respectively. The experimental results show that the proposed
method succeeds in estimating the optimal smoothing parameter
and yields higher classification accuracy values when compared
with state-of-the-art methods.

Index Terms—Classification, Markov random field (MRF),
smoothing parameter, support vector machine (SVM).

I. INTRODUCTION

THE latest and upcoming generations of optical imaging

sensors capture data with very high spectral and spatial

resolutions. This raises new opportunities for remote sensing

applications and challenges, where both spectral and spatial

image contents have to be analyzed. Markov random fields

(MRFs) are probabilistic models that are commonly used to

incorporate spatial information via a neighborhood system for

image classification problems [1]. In the MRF framework,

the maximum a posteriori (MAP) decision rule is commonly

formulated as the minimization of an energy function com-

prising spatial and spectral terms. One of the theoretical chal-

lenges consists in the proper choice of the balance between
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the contributions of these two energy terms, which is con-

trolled by a weight or a smoothing parameter. It has been

demonstrated that a too large value of the smoothing parameter

results in oversmoothing of the classification map and that

a too small value does not fully utilize the available spatial

information [2].

In order to estimate the smoothing parameter, Derin and

Elliott used the least squares approach in terms of a second-

order neighborhood system [3]. Later on, several heuristic

methods have been proposed to improve parameter estimation

and classification accuracy, such as iterative conditional esti-

mation [4], genetic algorithms [5], Ho–Kashyap optimization

method [6], and simulated annealing [2]. Jia and Richards [7]

used the normalization value of the spatial and spectral com-

ponents in the range (0, 1) to determine weighting coefficient

estimation.

Recently, Tolpekin and Stein [8] followed by Li et al. [2]

have proposed to estimate the smoothing parameter based on

the analysis of the local energy balance. They concluded that

the smoothing parameter is affected by class separability, scale

factor information, neighborhood system size, configuration of

class labels, and choice of the power-law index. Although their

method proposed an efficient way for estimating the smoothing

weight, it introduced another parameter, which was set as the

constant empirical value in [8] and [2]. Because this parameter

depends on the configuration of class labels in the image, it can

be estimated based on the spatial frequency distribution of each

pair of classes in each specific image, what was not done in [8]

and [2]. Moreover, the existing methods suffer from the equal-

class covariance matrix assumption.

This letter presents a novel and robust framework for smooth-

ing parameter estimation under the Gaussian class-conditional

density assumption, which overcomes the limitations of the use

of constant empirical values. A contextually adaptive smooth-

ing parameter estimation method is proposed on the basis of

the balance of spatial and spectral energies and the global

spatial frequency distribution of co-occurrence class label. The

class labels are estimated by introducing three new concepts

called the dynamic blocks, class-label co-occurrence matrix

of the blocks (CLCMB) and global class-label co-occurrence

matrix of the blocks (GCLCMB), which comprise the second

contribution of this letter. The third contribution of this letter is

a new edge probability index to preserve the information and

location of edges while performing spatial regularization.

The outline of this letter is as follows: Section II explains the

framework of the proposed method and details of each step. In

Section III, the data description and the experimental results

are presented and discussed. Finally, conclusions are drawn

in Section IV.

1545-598X © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. Flowchart of the smoothing parameter estimation approach and the
SVMMRF classification scheme.

II. MATERIAL AND METHODS

The proposed MRF classification model and processing steps

to estimate the smoothing parameter are presented in Fig. 1. We

denote an image by Y = {yi ∈ R
B , i = 1, 2, . . . ,m}, where B

is a number of spectral channels, and m is a number of pixels.

Let Ω = {ω1,ω2, . . . ,ωM} be a set of M thematic classes of

interest. The classification task consists in assigning for each

pixel yj a class label ℓj , yielding the classification map l =
{ℓj , j = 1, 2, . . . ,m}.

A. Potts MRF model

The basic concept of an MRF is that the neighboring labels

have a direct interaction with each other, and neighboring

pixels belong with high probability to the same class [9]. In

this research, the expectation–maximization algorithm [10] is

adopted for computing the MAP, which optimizes the global

energy function in the image by minimizing the local posterior

energies, i.e.,

U(yi) = λUspatial(yi) + (1− λ)Uspectral(yi) (1)

where λ is the smoothing parameter, Uspectral(yi) is the spectral

energy function in MRF, and Uspatial(yi) is the spatial energy

term computed over neighborhood (Ni) of pixel yi. We define

the spectral energy term as [9]

Uspectral(yi) = − ln {P (yi|ℓi)} (2)

where P (yi|ℓi) is estimated by pairwise coupling of probabil-

ity estimates from “one versus one” support vector machine

(SVM) outputs. The spatial energy term is defined by the Potts

model, which penalizes a pair of different class labels for

neighboring pixels, i.e.,

UNE
spatial(yi) =

∑

yj∈Ni

(1− δ(ℓi, ℓj)) (3)

Fig. 2. Procedure for applying a dynamic block to the SVM probability
estimations and results of each step. (It is assumed that the original image
has three classes.) (a) SVM probability in a specific block for each class.
(b) Selection of maximum class probabilities in that block. (c) Summation
of the selected probability in that block. (d) Block class label based on the
probability of the central pixel class label.

where Ni defines a symmetric neighborhood for pixel yi, and

δ(ℓi, ℓj) is the Kronecker delta function δ(ℓi, ℓj) = 1 if ℓi = ℓj
and δ(ℓi, ℓj) = 0 if ℓi ̸= ℓj . The superscript NE means that no

edge information is used [9].

B. Smoothing Parameter Estimation

Assume that a pixel i with the true label ℓi = α is assigned

to an incorrect class label ℓi = β. The change from α to β
leads to a change in the local likelihood energy ∆U l

αβ , which

is equal to the Mahalanobis distance between two classes,

and a change in the local prior energy, which is simplified as

∆UP
αβ = qψαβ [8], where q = λ/(1− λ) controls the overall

magnitude of the weights, and ψαβ depends on the size of

the neighborhood system and the configuration of class label

ℓi in its neighborhood pixels [8]. Once ∆U l
αβ and ψαβ are

computed, the smoothing parameter for a pair of classes can

be estimated as follows [8]:

λαβ =
1

1 +
ψαβ

∆U l
αβ

. (4)

In previous research, the value of ψαβ is set as an empir-

ical constant value, and ∆U l
αβ is computed using an equal

covariance matrix for all of the classes [2], [8]. This letter

proposes a new robust adaptive method to estimate ψαβ , ∆U l
αβ ,

λαβ , and, consequently, λ∗, which is an optimum smoothing

parameter for the image. For this purpose, we use the new

concepts of dynamic blocks, CLCMB and GCLCMB described

in the following sections. Moreover, we compute the average

covariance for each pair of classes instead of using the same

covariance matrix for all the classes [2], [8].

C. Dynamic Block

A dynamic block is defined based on the neighborhood

system, cliques, and the Markovianity concept in MRFs, where

their shape and size correspond to the selected MRF neighbor-

hood system [11]. In this research, we employ a second-order

neighborhood system. Hence, the block shape is a square with a

size of 3 × 3 pixels. A block should satisfy the following condi-

tions: Each block reports one value, which is the summation of

the maximum probabilities of neighbors within the block. Con-

sequently, neighbors outside the block are ignored (see Fig. 2).

The block is applied to the probability estimations derived

from SVM outputs [see Fig. 2(a)], and each pixel of the block

selects the maximum class probability of the relevant pixel [see
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Fig. 2(b)]. Then, the sum of the selected values for each block

is calculated and assigned to the central pixel in that block [see

Fig. 2(c)]. In the next steps, the blocks are categorized based on

the class labels of their central pixels [see Fig. 2(d)]. The blocks

of each class are then sorted in descending order based on their

probability sums [see Fig. 2(c)], and an equal proportion of

blocks with the highest sums is selected for each class. These

selected blocks are assumed to be reliably classified.

Next, the mean and covariance of each class are estimated

using the SVM probability vectors for the central pixels of the

selected blocks of each class. Then, the estimated means and

covariances are used to compute ∆U l
αβ , i.e.,

∆U l
αβ =

1

2
(µβ − µα)

′
Σ

−1 (µβ − µα) (5)

where Σ is computed using the average of the covariances for

each pair of classes instead of using the same covariance matrix

for all the classes [8]. The final output of this step is a square

matrix of size M , which shows the Mahalanobis distance for

each pair of classes. Moreover, the class code of the pixels of the

selected blocks is extracted and used to calculate the CLCMB

and the GCLCMB (see Section II-D).

D. CLCMB and GCLCMB

According to the concept of dynamic blocks, a new concept

is defined and is called the class-label co-occurrence matrix

of the blocks (CLCMB) [11]. CLCMB is a square matrix of

size M that provides information about the spatial frequency

distribution of each pair of classes in the selected blocks of

each class; a similar concept with a different methodology was

introduced in [12]. Let Nb be the number of selected blocks

for a class ωi. Since the second-order neighboring system is

chosen, each central pixel (yi) is surrounded by Ns = 8 pixels

(yj). The CLCMB index is calculated for the blocks of each

class ωi as

CLCMBωi,ωj
=

Nb∑

b=1

Ns∑

s=1

δ(ℓc,ωi)δ(ℓs,ωj). (6)

Here, CLCMBωi,ωj
is the CLCMB for class ωi with class ωj .

In this equation, ℓc is the class label of the central pixel of

block b, and ℓs is the class label of its surrounding pixels s. The

neighboring conditions in MRF say that: 1) a site cannot be a

neighbor with itself i /∈ N ′
i; 2) the neighborhood relationship

is mutual (i ∈ Nj ⇐⇒ j ∈ Ni) [10]. Therefore, the CLCMB

is converted to the global class-label co-occurrence matrix of

the blocks (GCLCMB), which is a square matrix of size M and

shows the global spatial frequency distribution of each pair of

classes in the image, based on the selected blocks, i.e.,

GCLCMBωi,ωj
= CLCMBωi,ωj

+ CLCMBωj ,ωi
. (7)

The local posterior energy of the central pixel (1) is penalized

by the frequency of the neighboring pixel labels as a spatial

energy term (3). Thus, by globally analyzing an image, the

probability that the true label (α) for a given pixel is mis-

classified as a false label (β) due to the spatial energy is the

same as the global joint probability distribution of each pair of

those classes in the image, which is computed by GCLCMB.

Therefore, ψαβ for each pair of classes (ψαβ) is the element

of the GCLCMB matrix, which belongs to classes α and β. In

the next step, ∆U l
αβ and ψαβ are used to compute λαβ for each

pair of classes using (4). Finally, the average of λαβ for all of

the classes is computed and is called the optimized smoothing

parameter (λ∗), i.e.,

λ∗ =

M∑
α=1

M∑
β=1

λαβ

M(M − 1)
. (8)

E. Edge Probability Map

Each image band may provide different or even conflicting

information based on its wavelength. Hence, extraction of

an accurate edge map for very high resolution multispectral

images and hyperspectral images is a challenging topic [9],

[13]. Therefore, a one-band gradient from the B-band image is

computed by using the Canny edge detector for all bands (B)
and with (nt) hysteresis threshold levels between (0.1 and 1)

[14]. By a summation for all bands and all threshold levels, the

edge probability map is computed [15]. The resulting map is

convolved with the Gaussian kernel to decrease the smoothness

effects near boundary regions [14]. In order to relate the edge

probability of each pixel to the smoothing parameter, a new

spatially weighted parameter w(i) is constructed, i.e.,

w(i) = 1−
1

B × nt

B∑

i=1

nt∑

j=1

G(i,j), 0 < w(i) ≤ 1 (9)

where G(i,j) is the binary edge map generated by using the

Canny edge detector on each band at each hysteresis threshold.

Therefore, to preserve the small structures and edges in the

classified map, a new spatial energy component for edge for

the adaptive MRF is proposed. Thus

UE
spatial(yi) =

∑

yj∈Ni

w(i) (1− δ(ℓi, ℓj)) (10)

where superscript E refers to the edge probability map.

III. RESULTS AND DISCUSSION

In order to evaluate the performance of the proposed

smoothing parameter estimation method, several experiments

were conducted using a multispectral satellite image, medium-

resolution and very high resolution airborne hyperspectral

images.

1) Mildura region image: A multispectral WorldView-2

(WV-2) image from 2010-05-21 comprising 521 × 521

pixels, which is located between 142.071 E, 34.188 S

and 142.083 E, 34.197 S. The image of the area is very

complex and comprises a variety of garden and building

roof colors. Seven major land use and land cover types

were chosen: gardens, farms, grass, trees, bare soil, roads,

and buildings.

2) The Indian Pines image: A hyperspectral image of an

agricultural area, which is recorded by the AVIRIS sensor.

The image comprises 145 × 145 pixels with 20 m/pixel

spatial resolution and 200 spectral bands. Its reference

map contains 16 classes.
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Fig. 3. University of Pavia. (a) Three-band color composite. (b) Reference data. (c) SVM pixelwise classification map. (d) SVMMRF-NE classification map.
(e) SVMMRF-E classification map.

TABLE I
ESTIMATED λ∗ FOR SVMMRF METHODS

3) The University of Pavia image: A very high spatial reso-

lution hyperspectral image of an urban area, which is ac-

quired by the ROSIS sensor comprises 610 × 340 pixels

and 103 spectral channels [see Fig. 3(a)]. Nine classes of

interest are considered [see Fig. 3(b)].

In order to compare the accuracy of classified maps, the same

sets of test pixels for each image were selected by the stratified

random method [16]. The training set contained 50 pixels per

class, and the test set comprised 1000 pixels for all the classes

for the WV-2 image. Table III gives the number of training and

test pixels for each class for the AVIRIS and ROSIS data sets,

respectively.

In this letter, multiclass one-versus-one SVM classification

was adopted as a nonlinear classifier through the use of a

Gaussian radial basis function kernel [9]. The optimal SVM

parameters C and γ were chosen by fivefold cross validation

[9]. The SVMLIB library was used to estimate the probability

for individual classes for each pixel and produce the classifica-

tion map [see Fig. 3(c)]. Then, the results of SVM classification

were used to estimate smoothing parameter λ∗ for each data set

(see Table I).

To estimate the efficiency of the parameter estimation

method, we applied both nonedge-based SVMMRF and edge-

based SVMMRF methods with different values of smoothing

parameter λ, varying from 0.1 to 0.99. The resulting overall

accuracy values for the three data sets are reported in Table II,

from which it can be concluded that parameter λ∗ estimated by

the proposed dynamic block-based method yielded the highest

overall accuracy values for the three images.

Table III gives overall (OA), average (AA), and class-specific

accuracy values, as well as the kappa coefficient (K) [7] for

the SVM, SVMMRF_NE, and SVMMRF_E methods [9], for the

Indian Pines and the University of Pavia images, respectively.

Fig. 3(c)–(e) shows the corresponding classification maps for

the University of Pavia image. It can be seen that the classifi-

cation maps obtained by applying the MRF-based method with

the optimal smoothing parameter contain more homogeneous

regions and look less noisy than the SVM classification map.

TABLE II
OVERALL ACCURACY ASSESSMENT OF THE CLASSIFIED MAPS FOR

SVMMRF METHOD WITH DIFFERENT SMOOTHING PARAMETERS

AND SVM FOR WV-2, AVIRIS, AND ROSIS IMAGES

We compared the performance of our classification system

using the proposed smoothing parameter estimation method

with the classification methods described in [9] and [17], which

used similar data sets and methods. The results of this study

indicate that the accuracy values obtained for the Indian Pines

image are comparable with those obtained in previous works.

However, the overall accuracy values of our method for the

University of Pavia image are improved by 6.5% and 8.4%,

when compared with the results of Tarabalka et al. [9], for

SVMMRF_E and SVMMRF_NE methods, respectively.

The overall accuracy of the proposed SVMMRF_E frame-

work is higher than that of the SVMMRF_NE method for all

three data sets. We evaluated the statistical significance of

the improvement of classification results in terms of accuracy,

when the proposed edge probability index was included in the

classification, by using McNemar’s test with the 5% signifi-

cance level for each pair of the classification maps of each data

set [17]. According to the calculated χ2 and z values, the null

hypothesis (H0) of no significant difference between two map

accuracy values is rejected for both Indian Pines and University

of Pavia images. This means that the use of the proposed edge

probability index is beneficial for MRF-based hyperspectral

image classification. The results of the Pavia University and In-

dian Pines image classification were then compared with those

of Tarabalka et al. [9]. Although using both fuzzy no-edge/

edge index [9] and the edge probability map similarly increased
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TABLE III
NUMBER OF TRAINING AND TEST PIXELS AND CLASSIFICATION

ACCURACY IN PERCENTAGE FOR EACH CLASS OF THE INDIAN PINES

IMAGE AND THE UNIVERSITY OF PAVIA IMAGE, WHERE OA, AA, AND

K REPRESENT THE OVERALL ACCURACY, AVERAGE ACCURACY,
AND KAPPA COEFFICIENT; CLASSES 1–9 IN THE UNIVERSITY OF

PAVIA IMAGE REPRESENT ASPHALT, MEADOWS, GRAVEL, TREES,
PAINTED METAL SHEETS, BARE SOIL, BITUMEN, SELF-BLOCKING

BRICKS, AND SHADOWS, AND CLASSES 1–16 FOR THE INDIAN PINES

IMAGE REPRESENT ALFALFA, CORN-NO TILL, CORN-MIN TILL,
CORN, GRASS/PASTURE, GRASS TREES, GRASS/PASTURE-MOWED,

HAY-WINDROWED, OATS, SOYBEANS-NO TILL, SOYBEANS-MIN TILL,
SOYBEANS-CLEAN TILL, WHEAT, WOODS, BLDF-GRASS-TREE-DRIVES,

STON-STEEL TOWERS, RESPECTIVELY

the SVMMRF_E classification accuracy for the Pavia University

data set, a comparison of the two results reveals that the

proposed edge probability map improved the overall accuracy

by 2.6% (see Table II), while the use of the fuzzy no-edge/edge

index in [9] improved the overall accuracy by only 0.7%.

For the Indian Pines image, the use of no-edge/edge index in

[9] yielded a decrease in overall accuracy of 0.2%, while the

proposed edge probability map yielded the improvement of

overall accuracy by 0.5%.

This nonsignificant difference between the SVMMRF_E and

SVMMRF_NE classification maps of the Mildura image needs

to be interpreted with caution. Because this image contains

large spatial structures, the selected test points do not comprise

region edges due to the small subpopulation of the region edge

pixels in the image.

IV. CONCLUSION

In this letter, a novel robust framework for the smoothing

parameter estimation for the spectral–spatial classification of

very high spectral and spatial resolution remote sensing images

has been presented. This method consists in performing SVM

classification, followed by a new concept that is called dynamic

blocks and two new indexes (CLCMB and GCLCMB) to es-

timate the smoothing parameter for MRF-based optimization.

Furthermore, a new spatially weighted parameter based on

the Canny filter is proposed, which helps in preserving edges

in the image scene. Experimental results have demonstrated

that the proposed method can estimate the optimal smoothing

parameter, and it yields accurate classification maps for images

captured by different types of sensors.
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