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Validité de quelques modéles asymptotiques pour
I’'inspection par courant de Foucault de dépots fins
fortement conducteurs

Résumé : Des couches minces hautement conductrices peuvent masquer des défauts prob-
lématiques lors d’un contréle non-destructif des tubes dans un générateur de vapeur via des
sondes courant de Foucault. Ainsi il est essentiel de pouvoir en tenir compte. Dans ce rapport,
on étudie des modéles asymptotiques avec différentes conditions de transmission effectives ayant
pour objectif de modéliser une couche mince axis-symétrique afin de réduire le cotut de calcul
numérique. Parmi des conditions de transmission qui dépendent d’un paramétre de redimen-
sionnement et de ’ordre du développement asymptotique, on en sélectionne les plus pertinentes
pour les applications pratiques via des tests numériques dans des configurations simplifiées.

Mots-clés : modéle de courant de Foucault axis-symétrique, modéles asymptotiques, conditions
de transmission effectives.
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1 Introduction

Non-destructive eddy current testing of the steam generator tubes is an essential task for the
safety and failure-free operating of nuclear power plants. This testing generally aims to detect
harmful defects such as cracks of tubes and clogging deposits in cooling circuit between tubes and
supporting plates (see for example [ITH4,[8/QLT3HI5]). These problematic faults can nevertheless
be masked by some thin layers of copper covering the shell side of the tube due to its high
conductivity. This is why it is important to be able to evaluate their influence on eddy current
testing.

The copper layers are characterized by a very high conductivity (as compared to steam
generator tubes) and a very small thickness, see Table [l A major numerical challenge to deal
with this problem with the full eddy current model is the expensive computational cost resulting
from the fact that the domain discretization should use a very fine mesh of the same scale
to the thickness of the thin layer. To reduce the numerical cost, we replace the thin layer
by some effective transmission conditions using the asymptotic expansion of the solution with
respect to the thickness of the deposit, which yields the so-called asymptotic models. A rich
literature on asymptotic models has been developed and we may cite among others Tordeux [12],
Claeys [5], Delourme [6], Poignard [10] and the references therein for different approaches and
various applications.

tube wall copper layer
conductivity (in S -m™1) or = 0.97 x 10° 0. = 58.0 x 10°
thickness (in mm) re, — 1y, = 1.27 0.005 ~ 0.1

Table 1: Conductivity and scale differences between tube wall and copper layer.

In this report, we consider the case where a copper layer of constant thickness covers ax-
isymmetrically the shell side of the tube. According to the choice of a rescaling parameter m
for the conductivity and the asymptotic expansion order n, we can obtain a family of effective
transmission conditions Z,,, linking up the solutions at the two sides of the thin layer. We
aim to choose the appropriate effective transmission conditions, i.e. the parameters (m,n), with
which the direct asymptotic model not only gives a good approximation of the full model in real
configuration, but also allows to establish quick inversion methods.

Although mainly considering here the case of thin layers with constant thickness, we shall
introduce the asymptotic method for general thin deposit layers, i.e. with variable thickness
(Section ). With that method, some effective transmission conditions with different parameters
(m,n) are calculated for thin layers with constant thickness (Section[). It is worth mentioning
that similar studies have been developed in [I1] for thin conducting sheet with constant thickness
with a different geometrical setting. Finally in Section d] we give some 1-D numerical examples
which allow to verify and compare the asymptotic models with these different transmission
conditions, and then discuss the most pertinent model in view of direct and inverse simulations.

2 Asymptotic approximation of axisymmetric eddy current
model

This section concentrates on the construction of asymptotic models for eddy current problems
with the presence of highly conducting thin layers. The objective is to get the effective transmis-
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4 Houssem Haddar , Zizian Jiang

sion conditions on the interface between the thin layer and the tube with which the variational
asymptotic model has no longer the volume integral on the thin layer domain.

Let us briefly introduce the axisymmetric eddy current problem. For more details readers
may refer to [7]. In the cylindrical coordinates, a vector field a can be decomposed into the
meridian part a.,, = a.e, + a.e, and the azimuthal part ag = agey. a is axisymmetric if Jypa
vanishes. Under the assumption of axisymmetry and the high conductivity / low frequency
regime (we < o), the 3-D time-harmonic Maxwell equations for the electric and magnetic fields
(B, H)

{ curl H + (iwe —o)E = J in R?, )

curl E —iwpH =0 in R3,

with a divergence-free axisymmetric applied source J (divJ = 0) can be reduced to a second
order equation on a 2-D domain R2 := {(r,z) : 7 > 0,z € R} for the azimuthal part of the
electric field Fp that we denote in the sequel by u = Fy:

1
—div (—V(ru)) —iwou = iwJy = iwJ in Ri, (2)
ur

where V := (9,,0.)" and div := V- are gradient and divergence operators in 2-D Cartesian
coordinates. Assume that J € L?(IR?) has compact support, and that 1 and o are in L>(R?)
such that p > u, >0, 0 > 0 and that y = u,, 0 = 0 for r > ry sufficiently large. Then problem
@) with a decay condition (u — 0 as r* + 2% — 0) has a unique solution in H(R?%) where for any
Q2 C R% we denote

H(Q) = {v (1 4 r2) "2y € L2(Q), 2V () € L?(Q)}

with A any real > 1 (see [7]). Let us indicate that if £ is bounded in the r-direction then H ()
is equivalent to the following space for which we shall use the same notation

H(Q):= {v 'y e LAHQ), 2V () € LQ(Q)}.
Hence, the eddy current equation (2)) writes in the variational form

a(u,v) := /Q (%V(ru) -V(rv) — iworwv) drdz = /inJT)r drdz Yoe H(Q). (3)

For numerical reasons, the computational domain will be truncated in radial direction at
r = r, where r, > rq is sufficiently large and impose a Neumann boundary condition on r = 7.
Then the solution for the truncated problem would satisfy @) on Q = B, := {(r,2) € R? :
0 < r < r.}. This is why we shall use in the sequel the generic notation for the variational
space H(Q) with Q denoting RZ or B, . We also recall that the problem on Q = B, can be
equivalently truncated to a bounded domain B,, ., = {(r,2) € R? : 0 < r < r,,|2] < 2.} by
introducing appropriate Dirichlet-to-Neumann operators on z = +z,. This would be convenient
for accelerating numerical evaluation of the solution (see [7]). As a corollary of the well-posedness
of the problem for v we can state:

Corollary 2.1. Assume that the source J € L*(Q)) with compact support. Then the variational
formulation @) has a unique solution u in H ().

Inria
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Tube Deposit

Figure 1: Representation of a thin layer deposit.

2.1 Rescaled in-layer eddy current equation

We consider a thin layer of deposit with high conductivity (in our case, a layer of copper)
covering axisymmetrically (a part of) the shell side of the tube (see Figure [Tl for a radial cut of
the setting in the cylindrical coordinate system). The first step is to rewrite the in-layer eddy
current equation by rescaling the coordinate in the transverse direction and the conductivity
with respect to the layer thickness. The analytical solution of this rescaled equation allows to
get the relationship between the boundary values of both Dirichlet and Neumann type on the
two longitudinal boundaries of the thin layer.
On the domain of problem (2, we set

Qy :={(r,2) €Q:r2ry,}

The thin layer is depicted by the domain Q2 C ©Q,. We denote by u%. the fields outside the
deposit layer, with % in Q_ and ui in Q, \ Q2 (at the shell side of the deposit layer), and by
u® the in-layer field, i.e. in QS (see Figure[). Assume that the thickness fs(z) at the vertical
position z is of the order §

f5(2) = bd(2),

where ¢ is a small parameter and d(z) is independent of 6. Assuming that the deposit conductivity
writes
Om

Oc = 5_771’ (4)

where o, is an appropriately re-scaled conductivity and m the re-scaling parameter. We will
particularly interest in the cases where m = 0,1,2. So in the deposit layer the eddy current
equation (2)) writes

(1 5 ks 5
—div [ =V(rv’) | = 2u® =0 on 9, (5)

r om
where k:?n = iwpcopm,. We consider the variable substitution

T*th

pP= T? pe [Ovd(z)]v

RR n° 8556



6 Houssem Haddar , Zizian Jiang

and we denote by @ = @(p, z) := u®(rs, + dp, z) the re-scaled in-layer solution. From (5)), one gets

ﬁa% + I

]{?2
S50yl + 50t — i+ 1 (a§a+ —ma) =0.

5m

By substituting r with r, + pd, we get for m = 0,1,

Dt = =By, — 6°Ba, i — 6°B, i — 6By, (6)
with
2 1 1_ 200 1 2
Bt =0+ —0 Bi = ==07 + —0, + ki,
0 Tty g * Tty P ! Tty ' Tty g !
2 1 2 1 2
Bi= L2+ L0, - =+ 02+ K, Bl =502+ L0, - = + 0+ L,
rt2 r to to rt2 Tt2 rtz T't2 (7)
2 9 2
By =L (02 +13). 5= Loz 4 Loit,
TtQ rrt2 th
2 2
P
Bg:ﬁ(angkg), B‘fz%@j
23 T4,

For m = 2, we consider a weighted in-layer field
WO (r, z) = rul(r,z) T € [ry,, T, + f5(2)],
and after re-scaling one has
@(p, 2) i= w’ (re, + 6p, 2)
So the eddy current equation for the in-layer field u° (&) becomes here

1 3 k3
30,0 = T30+ 50+ O =0.

By substituting r with r;, + pd, we obtain

(02 + k3) w = — 6By — 6° By — 5° By — 5* By, (8)
with
2p
1 2 2
Bl = E(aerk:Q),
2
3
Bi =L 02+ 13) - =+ 02,
i, dry, )
2
Bj = Lo,
th
2
4 _ P a2

Inria
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5
2.2 Taylor developments for v

We would like to extend the solution outside the deposit layer ui through the layer domain till
the interface T'y,, i.e. from Q4 \ Q to ., such that the transmission conditions on T'. between
u and ui could be expressed in terms of ui onI'y,. As ui satisfies the eddy current equation
with coefficients y = p,, and o = ¢, = 0 in Q4 \ Q2, it is natural to assume that its extension on
Q9 satisfies the same equation

1
—di \Y% =0 in Q.
iv (,UUT (Tu+)> in Q4

Using the variable substitution v = r —r,, one rewrites the above equation in the following form

4
> VA (v0y,0.)ul =0, (10)
§=0

where

Ay (v,,0,) = (v0,)? — v,

2 1
Ay (v8,,0.) = — (18,)° — —vd,,

Tty Tty

1
Ay (v8,,0,) = = (v9,)? — = + 2,

Tty Tty

As (v0,,0,) = —02

A4 (Val,, 82) = —262

If the asymptotic expansion of ui with respect to 0 writes

o0
ul (r,2) = Z o"uly (r, 2),
n=0
then each term u’ (1, z) verifies the same equation (I0). With Taylor series expansion, one has

n, n 1
u” (re, + v, 2) Zyk "(z) where wuF(2)= = (O5u't) (re,, 2).

Since
vo, (Vkurfrk( )) =k (l/kuik(Z)) )

we can indeed write A; (v0,,0.) as A; (k,0,) while it is applied to (ukuzk(z)) Thus, from (0]

4 oo
SO Ak, 0) (K TTu) = 0.

§j=0 k=0

RR n° 8556



8 Houssem Haddar , Zizian Jiang

The equality at order O(v*) yields

./4( ZA nk]7

with ui’_l = ui’_Q = uz’_?’ = uﬁ‘r’_4 = 0. Now we consider .AO (k,0,) = k? — k. For k > 2,

Ao (k,0.) # 0, thus invertible with its inverse Ay " (k,0,) = . So we have

mk— A ( ZA WP k> 2. (11)

Now we define recurrently two families of operators {Sp (9,),S} (9:)}:

Sy:=1d, S :=0, S:=0, S :=Id,
4

818 :_AO ZAJ k j’ Sk ](a) )
4

811 :_Ao ZAJ k J,0 Sk J(a)

From the recurrent relation (1), one observes

uik(z) =8P (9.) uly (rey, 2) + S} (9.) Orul} (145, 2).
Therefore we have the following developments

o0

ull (re, +v,2) = Z P <S,g (9)u'y + 8L (8:) 87«1/_:_) (Tt 2),
k=0
Opuly (re, +v,2) = Z P (k+1) (5184-1 (92)u'}y + Sp iy (02) aTu7}r> (rty,2).
k=0
We also define the operators
<o 0 L QL. Lo
Sk‘ = Sk — ;Sk" Sk = ;Sk (13)
Then the Taylor series expansions write
ulf (1, +v,2) = Z vk (5,8 (0:)uly + g,i&(ru’fr)) (rty,2),
k=0

O (rull ) (re, + v, 2) ZV (k+1) ( rt2§,8+1 +§,8)u1 + (rtzg,iﬂ +§,1)8T(7°u1)) (rty, 2).

(14)

Inria
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2.3 Transmission conditions between the in-layer field v’ and u’.

We consider the transmission conditions on the two boundaries I'y, and I'; of the thin layer. The
transmission conditions on Ty, linking up u® and u’® write

S| _ .8
u—|Tt2 =u |7‘t25 (15&)
L s 1 s
—0r(ru)| = —0o.(ru®)| (15b)
1243 T c Tt
2 2
and the transmission conditions between v’ and u° on I'. write
’U,i_h*c = u6|Fc7 (16&)
—0u(ru)| = () (16b)
— O (ru = —0(ru
Ho i r. He r.
The unit normal and tangential vectors on I'. at the point (ry, + dd(2), z) are respectively
_ (1,—5d/(2})) = (6d/(z)51)
VI+(0d(2))2 VI+(0d(2)2
(I6a) implies the continuity of the tangential derivatives of the field, that is
T vui|n2+5d =T Vu5|rt2+6d
(5d’0T(rui) + GZ(Tui)) = (5d’&(7‘u5) + 0. (ru5)> (17)
Tty +dd Tio +48d
On the other hand, (I6h) yields
1 1
— <8T(rui) - 5d’8z(rui)) = — (&(Tu‘;) - 5d’82(7"u5)> (18)
v r,+od  He Ty +0d
From (I7) and (I]), we get the transmission conditions on I, as
u6|7‘t2+5d = ui|Tt2 +od> (19a)
he 4 (0d')? sd'
) . s He )
Or(ru®),, sq = (m@(mﬁ +(1- E)W@(Wﬁ » (19b)
Ttg

2.4 Procedure for obtaining effective transmission conditions between
5

Uy
Given a re-scaling parameter m € N in (), we write the re-scaled in-layer eddy current problem
@) as a Cauchy problem for the re-scaled in-layer solution @ with initial values given by the
transmission conditions () between u° and u® on I'y,. The boundary values of % on I, should,
after going back to the initial scale, match the transmission conditions ([3) between u® and ui_
on I'.. This yields the effective transmission conditions between u® and ui on I'y, by considering
the Taylor series expansion (I4) which allows to extend u. to the interface I'y, (I9).
In asymptotic expansions, we develop u‘si and @ with respect to §:

oo oo
) n, n ~ n, n
uizg o"uly, uzg TR
n=0 n=0

RR n° 8556



10 Houssem Haddar , Zizian Jiang

We denote by Z,, , the approximate transmission conditions between u‘si on I'y, with re-scaling
parameter m at order n in the asymptotic expansion (O(6™)). Therefore, we can obtain a family
of asymptotic models with different approximate transmission conditions Z,, , according to the
choice of (m,n).

3 Asymptotic models for deposits with constant thickness

To determine (m,n) with which the asymptotic model using Z,, ,, is both a good approximation
and easy to deduce inverse methods, we study a simplified case where the deposit layer on the
shell side of the tube has constant thickness 4.

3.1 Transmission conditions between @ (or @) and ud.
1. m=0,1.
The transmission conditions at I'y, (I5) yield

ui |7‘:7‘t2 = a|p:0a

1 1 é
— 0 (ru’)| _ = — (L52 + p@,ﬂ)—i—a) ,
7% T="T, e 1) p=0
which imply
un|p:O = u71|r:rt27 (20&)
n _ 1 n—1 1 e n—1
apu |p:0 = *EU_ |T:Tt2 + EZ aT(TU_ )|T:”2 . (20b)
From the transmission conditions at I'. (I9) we have
Ui|7“:n2+6 = ﬁ|p:1’
1 1 Ty, + 5p ~ ~
— 0, (ruf =— | =2—=9
B (TU-‘,—) ’r:rtz +4 Le ( 5 pu +u -
Combined with the Taylor expansions ([I4)), the above conditions yield
Wl =Y (§gu1—k n §,§ar(m1—k)) o (21a)
— T=Tt,
= (*Ul 0 l-k—1 ; Q1 I—k—1
O,y =3 3 e { = (St T 4 S ru Y
1=0 k=0 'tz
00 1) (08 + ST 4 (S + §;>ar(ruil“>)} (21b)
v Tto
2. m=2.

From the definition of w, we have

Inria



Validity of some asymptotic models for highly conducting thin deposits 11

Then after some calculates, the transmission conditions at I'y, (I5) is transformed as

w|p:0 = rt2a|p—0 = vrtzuilrznza
- He 0 5
a a T=r - a7‘ - )
Pw|p:0 2\/—U|P o+ vV Tta u|p 0= 2\/— *| to + Lt \/E (ru )’r:rtz
which yields
wn|p:0 = v/ Tt2U7i|r:7‘t23 (22&)
1 1 He -1
d,w™ = — — O (ru” 22b
ot |p:0 Tty ( 2u_ + 1243 (ru_ )) T=Ttq ( )
Similarly, the transmission conditions at ', (I9) become
a’|p:1 =T, + 5Ui|T:m2+5
(Qk 3) _2k2—1
(% D AL
8pu7|p:1 2 |p 1+ AV th 60 u| =1
°°< 1)* 2k — Dl _a k>< L Bey s
=4 T ) —-uf + —0,(rul.) .
(kz—() k! 2k ’ 2 Ho r=ri,+0
Together with the Taylor developments (I4]), the above transmission conditions yield
n n—Fk N
Wpmr = Y ar Y (SN@)wy T+ 800 (23a)
k=0  1=0 e
n—1 n—k—1 1~
Dpw™|,_y = > b {(55{) S+ 1) (r, Sty + S >> kit
k=0 1=0 o
1~
+ <§Sl 0 (l + 1)(7’t251+1 + Sl )) 8 (Tui k=l 1)} (23b)
v T=Tt,
where
—1)F1 (2 = 3)I! 2
ap = /T, aklk>1 = ( k)! ( % ) T,
(—1)* (2k — 1)!! _2kt1
bk = TTTtQ 2,

3.2 Computing algorithm for the re-scaled in-layer field @ (or )

In this section, we follow the procedure in 24 and give the detailed computing steps. Given
m = 0,1 or 2, we resolve the corresponding problem (@) or (§) in the thin deposit layer to
obtain the transmission conditions between u” and v’} (or between w” and w?) on I';, from
the transmission conditions (20) - ([2I)) between u™ and '} (or the transmission conditions (22)
- [23) between w™ and wh).

1. m=0,1.

RR n° 8556



12 Houssem Haddar , Zizian Jiang

We consider a general Cauchy problem with an arbitrary second member f for the same differ-
ential equation as in (@)):

Ru=f  pelo1].

With the initial values at p = 0, the solution % writes

P rs
o) = il + Oyl oo+ [ [ 16 dras,
0 0

And at p=1,

1 s
Ul p=1 = i p=0 + Opti] ,_ +/ / f(t)dtds,
0 0 (24)

1
Bptl,_, = Oyl _o+ /O £(8) dt.

From the above resolvent and the re-scaled eddy current equation (@), it follows that the asymp-
totic expansions {u™},, of & can be obtained recurrently via the following Cauchy problems

with initial values given by the transmission conditions (20) at p = 0. Then the boundary values
of u™ at p = 1 given by (24)) should coincident with those given by the transmission conditions
@I) on I'.. These equalities give recurrently the transmission conditions linking up v’} on I'y,.

2. m=2.

We consider the Cauchy problem with the same operator as in problem () and an arbitrary
second member f

(0 +k3)w=f pel0,1],
with initial values at p = 0. Its solution w writes

1

= (i8]0 — (05 )| =0) cos(kap) + 1= (0,10],g = (v F)l,g) sin(hap) +v £ (25)

where v = zi—e*2ll is the fundamental solution, i.e. the solution of the problem with a Dirac
distribution as second member:

One computes

1
v f(p) = /Op ;eikQ(p*E)f(g) de + / 'Leilm(f*p)f(g) de,
P

1
ve (1) = [ G006 d = 0,0 N1,

Inria



Validity of some asymptotic models for highly conducting thin deposits 13

By substituting the above terms in (25), we obtain
Sin(k/’g)
ko
Op| ,_y = —kasin(kz) (0 — v f) |p=0 + cos(kz) (Opw + ikov * f)| _o + ik2(v * f)]o=1.

W|p=1 = cos(ks) (b —v* f)|p=0 + (Ot + kv % f)] g + (05 f)lp=1,

(26)

Therefore, from the above resolvent procedure and the problem (), the asymptotic expansions
{w"},, of w verify recurrently the following Cauchy problems

4
(02 4+ k3) w’ = — g Biw" 7, wl=w?=w3=w"t=0,
i=1

with initial values given by the transmission conditions ([22) at p = 0 (on I';,). Their solutions
give the boundary values (28] that should coincide with the transmission conditions ([23)) at p = 1
(on T'y,), which implies recurrently the transmission conditions connecting u’} on T'y,.

3.3 Computation of some approximate transmission conditions Z,, ,,

In this section, we follow the computing algorithm described in the previous section and
give the transmission conditions Z,, , on I'y, for m = 0,1,2 and n = 0,1,2. To simplify the
computations, we suppose ji. = [, which is the case for copper. We will use the first 5}6(82)
operators in the Taylor developments (I4]) with their explicit expressions

S =14, St =0,
~ 1 ~ 1
SV =——, St=—,
1 th 1 th
~ 1 1 ~ 1
89 = o — 292 Sy =—55.
2 T%Z 2% 2 27"?2

We denote by uft the approximated fields of uft up to the asymptotic developments order, that

1S

6 0

Uy = Uy order 0,
u = ud + dul order 1,
u’ = ul + dul + 6%l order 2.
We also introduce the following notations
+ 6 s + 6 s
To U = u:i:|7“t27 YU = aT(Tu:t)|Tt2a
hou’] = g u’ — 5w’ [ ] = gty e — gyl

1 B - 1 L
(rou®) == s (v u’ + g ud), (™ ) = S (g il o+ g ),

2
Readers may skip the fastidious computational details and refer to the following expressions
for the corresponding approximate transmission conditions.

Zoo B3) or B4 | Zoy EI) or H2) | Zop HED or HY)
210 (B4 or 21y @) or (1) | Z1, (@63) or (G6)
Zy0  ([@) 221 ([[@) 222 ([

RR n° 8556



14 Houssem Haddar , Zizian Jiang

3.3.1 Rescaling parameter m =0

1. Order n = 0.

From the asymptotic development (@) and the transmission conditions 20) on Ty, for u°, we
have the differential equation for «°

Pu’=0  pelo,1],

UO|P:0 = u(l |Tt2 )
0 —
Opu |p:0 =0,
which yields
u(p) =ull., pel0,1].
Thus, with the first transmission condition @Ial) on I, for u°, which is
“Olpzl = §8u3-|m2 + golar(rug-)lnz = U9r|n2a (27)
we have
u0—|m2 = ugrlrtz- (28)

Similarly, considering (@) and the transmission conditions [20) on I'y, for u!, we write the
differential problem for u! as
Pu' =-Bu’=0  pel0,1],
1 1
U |P:0 = u7|7’t27

1 1w
1 _ 0 c 0
apu ‘p:() - 7Eu—|7“t2 + E_taT(ru—”TQv
which implies
1
dput = —— (uo|”2 — &&(ruo)htz) , (29)
Tty Lt
1 L
1 _ .1 0 c 0
W=y, = o (4, - 200, ) o (30)
The second transmission condition ([2ID) on T, for u! writes
1 1 0 He 0
dpu |p:1 = U+|m2 - _ar(ru+)|n2 . (31)
TtQ Ho
Hence, the equalities (29) and (BI)) yield
1 1
B0, )y = =20, (1), (32)

Tty Kt Tty Mo

@8) and (B2) imply the approximate transmission conditions at order 0 on I'y,

u’ =, (33a)

20,0 L pe 5 L pie 5
’ — —=0p(ru’) = ——0.(ru’), 33b
Tty [t ( ) Tty Mo ( +) ( )

Inria



Validity of some asymptotic models for highly conducting thin deposits 15

which write also

ou’] =0, (34a)
o0 { [ 1] = 0. (34b)

We remark that Zj o given by (B3) are simply the transmission conditions between the tube wall
and the vacuum, as if the deposit layer does not exist.
2. Order n = 1.

The first transmission condition (2Ia) for ! on T

ullper = SQul |y, + 830 (i), + SPUS L, + STO(rul)] s,

1
= uﬂnz T (U9r|rt2 - 8T(Tu9r)|n2) (35)

to
together with the equality ([B0) imply

1 p 1
1 c 0 1 0
u—|m2 + Ezar(ru—”nz = u+|n2 + EaT(TU—”nz' (36)
One get the differential problem for u? from (@) using the previous expansions u", u! and the
transmission conditions (20) on Iy, for u?

8§u2 = —Byu' — B
2 1 pe
= <T — (02 + ’fg)) W, — =0 (rul)l,,,  pe[0,1],
T, to Mt
u2|P:0 = u2—|"'t2’
1 1 p
2 _ 1 c 1
Gpu ‘p:O = —Eu_htz + E—t&(ru_)|”2.
Thus
1 ¢
dpu? = — — <u1|m2 - “—ar(ml)mz)
Tty Mt
2 1 pe
+ —83+k2>ugrt 7__87"7’”(1 Tt) ) 37
(- @)l - b0l ) o €
1 c
@ =y = o (s, — 2ot ), ) o
Tty Mt
2 1 p P
= (D4R )l |, — =20, (0, ) 38
+((F-@ )l - Fa e, ) 5 )

The explicit expression of the second transmission condition (21H) on I', for u? is

1 Le 2 Le 1
ou?|,mg = —— (ul e — O (rul)|, )—l—(———@f) ul |p,. — =0 (ru®)|r,. . (39)
P |P Tty +| to Lo ( +)| to Tt22 Lo +| to T?g ( + | to
Thus, B1) and [B9) imply
L pe 1 2 2\ .0 1 pe 1 He n2 0
— — 0 (ru’) — (ki + 0% = —=0, — —0zuy. 40
Tty Jit (ruz) = (ko + 22) Tty Ho (ruy) = g, 00 (40)

RR n° 8556



16 Houssem Haddar , Zizian Jiang

B6) and Q) lead to the first order approximate transmission conditions

5 e 5
ul r—/‘j—ar(mm = u} + 0, (ru}), (41a)
z to Mt to
U oty s 02y ot = ety - 5ol ()
Tty [t Tty Mo Ho

Considering ([B4) we have the equivalent expressions
[70“6] = Oa (42&)

201 _ T, ke
[l = =02 (youd). (42b)

C

3. Order n = 2.

From (B8) and the first transmission condition (2Ial) for u? on I, which is

1
“2|p:1 = “i|m2 e (u}rlrtz - 8T(7“u}r)|”2) (43)
2
one gets
1w 1w 1
u? |y, + T——Zar( ul )y, + W—‘:@r(m(i)ln 51<;3u0_|,¢t2
2 2
1
= uﬁ_ rey T T—aT(mir)|”2 + EGT(r“i)lnz' (44)
2

ta

To get the second transmission conditions connecting u% one has to consider the Cauchy
problem for u? derived from (B)) and the transmission conditions (20) on I'y, for u3

a§u3 = —Biu? — Biu' — B3u°
2 1w
= 82 k ! T *__Car ! r
(7~ @+ ) b, — B0y,
3 2 0 He 0
+po| 3 — —(3 + ko) _2“—|m2 + _ar(r“—)lnz p € 1[0,1],
tz Tty 127
oo = |y Oty = |y, + 00, ()
Wilp=0 = U—lre,> P =0 = Tt, Hlrey e, it Tl
On one hand, we get from the above Cauchy problem
1 1 pe 2 1 pe
0 3*:7_27“ __8 T _7_82 17" *__87“ ! T
o = = ool b, + oo (2, + (= B2 ), = Eea )
1/ 3 Lhe
____a2 k2 —2uY |, 220 (ru®) . ).
+ 5 (Tt32 th( >+ 0)) ( u” |, + o (ru)lr,,

One the other hand, the second transmission condition (2ID) on I, for u? writes explicitly

1 I 2 1
3 _ 2 c 2 2\ .1
apu |p:1 =T <U+|Tt2 - Ear(mh-”r@) + <7‘T - az) u+|n2 - 7“78 (TU+)|Tt2

to to to

3 1 c 3 1 pe
b (- a0 0t + (5 - ) 0, (09

Ty, 21y, 27’t 27}2 Lt

Inria



Validity of some asymptotic models for highly conducting thin deposits 17
The above two equalities result in
L Beg (ru) = (B2 4 02)ul + —— (B2 4 02)u® — 225, (ru0)
Tty ft M Tt 214, it
1 e He 1 He
= HFeg (ru2) = Fep2yl He g2, 0 16
o o ) T O (46)

We derive from the previous transmission conditions (@4) and (6]

(47b)

52 ) ) I ) 52
Sy - c 5y _ .0 e L 4
( 5 kzo) ul + (T +3 32) Mt&(m,) ul + o + o) Oy (ru’.), (47a)
1 52 1 52
z . k2 c . 5 -5 k2 2 §
0,2 <_rt2 o, 0> _uta (ru’) + < + 2”2) (kg +07) u
1 e 5 5 He 2 5
= uvar(mu) + ( 0+ o U8Zu+.

From (34), [@2), the above conditions write also

20,2

He 2

3.3.2 Rescaling parameter m = 1

1. Order n = 0.

B ro k2 k K2
(™ ] ( 520 4 5? ;><70u5>52—0<u Lygu).

(48a)

(48b)

The asymptotic development (6) and the transmission conditions (20) on I'y, for u° lead to the

Cauchy problem for «° with initial values at p =0

2,0 _
du" =0 pel0,1],
UO|P:0 = U(llrtg’

0 _
Opu |p:0 =0,
which yields

u(p) =ull,, pel0,1].

(49)

Taking p = 1 in (@) and considering the transmission condition on I'. for u° (27), one gets

u9|th = Uy, -

(50)

Then we consider the Cauchy problem for u!' given by the asymptotic development (B) and

by the transmission conditions (20) on I'y, for u!

Put = —Blu® = -k’ |, € [0,1],
u1|P:0 = ul'my
1 1 p
1 B ¢
dpu |p:0 = —Eu lre, + —QEG - (ru® Nrey

RR n° 8556



18 Houssem Haddar , Zizian Jiang

which implies

1 .
apul =_— (u0|”2 _ &&(ruo)htz) — pkz%uojnz, (51)
Tty Mt
2
p % 1
W=y, = 2 (W, = B0, ) - gRuC 52)
2

(5I) and the transmission condition on I, for u! (BI)) imply

L p
0 2,0 _ c 0
Ezar(mfﬂrm —kiu |y, = EZGT(WJFNW' (53)

(G0) and (53) give the approximate transmission conditions at order 0 on Ty, for u’.

u’ =l (54a)
Z10 it + 2 Feg ) = i&@(mi). (54b)
Tty bt Tty Ho
That is
[ou’] =0, (55a)
F0 ] = <R . (35b)

C

We remark that the transmission conditions Z; ¢ given by (B54)) are indeed the classical boundary
impedance conditions which take into account the deposit layer.

2. Order n = 1.

From (52) and the transmission condition on I'. for u! (B5) we have

1 1
u1*|7"f2 + EEaT(Tu(l”th - Ek%ug|Tt2 = u}i’|""t2 + E&“(TU(?FNTQ' (56)

Using the asymptotic development (@) and the transmission conditions (20) on Iy, for u?, we
get

8§u2 = —Bju' — B
L p
2,1 2\ .0 0
= —kzlu_|”2 + (7’2 - az) u_|”2 - = MCGT(TU_H”Z

2 1 p ki
2 0 c 0 251 0
+pk1 (th u7|7“t2 - Tt EaT(ru”TtQ) +p _u7|7"t2 pE [07 1]7
u2|P:0 = ug'my
1 ,
2 _ 1o L fe 1
dpu |p:0 = u |p,, + e O (rul )|y, .

Inria



Validity of some asymptotic models for highly conducting thin deposits 19

So the above Cauchy problem is solved by

1 .
=~ (i, ~ i), )

Tt2
2 1
to (Kbl + (- 2) - 0,01, )
Tt to Mt
k2 [ 2 1 u ki
21 0 C 0 3™ .0
+p ? <E’u_|7~t2 — EE&y(TU_”nZ) +p Fu_|n27 (57)
2 2 P 1 He 1
u- = U_|rt2 - E (u_|rt2 - EaT(Tu—)thz)
1 2 1 p
2 2.1 2 0 C 0
+p B} (—k1U|m2 + (% - az) u—'rtZ - %EaT(Tu)thz)
k2 (2 1 u ki
st 2 0 = Heg 0 AZL 00, 58
+ p 6 <Tt2 _|Tt2 TtZ lu’t T(ru_)|rt2) + p 24u_|rt2 ( )

Using (57) at p = 1 and the explicit expression of the transmission condition for u? on 'y, (39),

one has on I'y, the equality

ki pe 1 p 1
20 (ru’) = — 220, (rul ) — 202l
e fin - (ru’) P - (rug) R
(59)

1w k? ki
71€21 __Car 1y 82*—1*—1 (U
Tul + - (ru) o, 5 u.

(56) and (59) yield the approximate transmission conditions at order 1 between u% on I'y,

5 5 5
1-— —k2) w4+ —=59,(rul)) = ud + —o.(ru’), 60a
(1-34) u + -0, (ra?) =+ 0 (rud) (602
k3 ki 1 k3
z ksl LfL _ M § s &T 5
1,1 ( 1 (82 o 6 u’ + ~ . Mta (ru®)

C 1 C

— —slepzud 4+ —Lep (rud). (60b)
v Ttg Mo

With (61), the above conditions yield the equivalent expressions
s ki s
[you’] = 53@0% ), (61a)

211 k2 kA k2
] = 22 (< 4 o o+ 5D o) - 0 ). (o)
3. Order n = 2.
We derive from (58) and the transmission condition on I'. for u! (@3)
u? — %k:ful_ + i%&(rul_) - (6];1 - %) u® (é - 61?"1) %(’)T(ru(l)
=u3 + %&(ru}r) + ﬁ&(rug). (62)
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20 Houssem Haddar , Zizian Jiang

Now we consider the Cauchy problem for u? with initial values at p = 0. From the asymptotic
development (@) and the transmission conditions (20) on Ty, for u3, the Cauchy problem writes

02 = —Bju® — Biu' — Biu®
2 1 p
_ 2,2 2 1 c 1
= —kju“|, + (E - 52) U |, — %E&(MLHHZ

2 1w
2 1 c 1
p<k1 (Tt u—|’”tz Tty bt 8T(Tu_)|rf2)

6 2 3 1 He
b= 2O, + (G - )0 ), )

Te, 1o Tty
A 9 2k3 u
o (K1 1 2 2,0 1 e 0
+ P (?U|m2 + kl( - ﬁ + az)u7|7‘t2 + gEaT(Tu”TQ)
ko

1 1 pe
+ kaéll <Eug|m2 + 67“t2 Ear(ru(l”nz) - p4ﬂu—|7“t2 p S [05 1]5

u?):O = u:i|7’t27
1 1w

| _ =——u? |, +—="=0,(ru?
U ‘p:O rtzu_Ir,52 - - (ru?)

Then we obtain

1 1 pe
o 3 - 2 __Ca 2
pu Tty U7|Tt2 * Tty [t T<ru*)|

2 1 e
+p (—k’fu2|”2 + (Tg - 83) u1_|”2 T2 'u_ar(rul—)lnz)
t

2]

6 2
Fm o Lo, + (- oo ., )

P (ki 2 9 2) 0 ! o
+ E <7’u_|n2 +k1(7 E +az)u—|7“t2 + _QE(?T(TU’—NTQ)

4 6
P L pic k
+ Zki‘ (— —aT(ruO)thQ) —pP ==, (63)

L o
Ul 67, fut
2

2Tt2

Taking p = 1 in (63) and considering the transmission condition for u® on I'y, ([@H), we have

Bk
2Tt2 6

1 e
C 2?4 L Heg 2 ) - (ag _
Tty Mt

UK 2 KK o (B K e,
g2 (2 L L Fe gy (ru®

+ (<2rt2 +3)% <3r§2 T, T o))t gzt Sy, ) g O
1 e
1 ey

1 pe
P~ L (rud) — 92ul + o M—@fui. (64)
2 v 2 Mv

From (62)) and (64]), we conclude the second order approximate transmission conditions for

Inria



Validity of some asymptotic models for highly conducting thin deposits 21
U(:St on th
5 k3 ki 1) 1 k? Lhe
1— k2 — 52 )u6+(—+62—— L )—CGTTU‘S_
( 2 (67",52 24) Tty (2Tt22 67",52) Lt ( )
= + LA + o Oy (rul,) (65a)
+ Tty 27"?2 I
k3 ki 1 k? 2k? ki S
z _ 5(0% - 2Ly 42 Ayp2 2 M M g
b2 < —00 g z o) T\ G )% 5 T, o))
1 k? ki W
+(— -6 i + 0% (= + L )—CaTru‘S_
(Tt2 21y, (2Tt22 247",52) Lt ( )
6 C 1 C
= (=04 e o2t 4 Lo (65b)
th v to Mo
Considering (53)), (61)), the above conditions also write
k? E? ki k?
s 1 1 2 R1 2 Kkt
=(0—=—(—— 45— +4
o) = (55 = (G + %) ) (o) + 5 (), (661)
S s Tt 9 k3 ki 5k1 5  2k% 5ki 17k 5
- k246 M _ 9%
Zia )= 2 (ka4 B+ 2 Char - 2 - L T ) o)
k3 k3 ki
- (0% + G+ 5D G, (661)
2 2y, 6

3.3.3 Rescaling parameter m = 2

1. Order n = 0.

The asymptotic development (&) and the transmission conditions ([22)) on I'y, for w® lead to

the Cauchy problem for w® with initial values at p =0
(07 +k3)w’ =0 pel0,1],

wO|P:0 = VTt2u2|Tt27
Oplp=0 = 0.

The solution and its derivative writes

w’ = ,/rtzu(l|”2 cos(kap),
o’ = —/riu’ |p,, ko sin(kap).

We consider the transmission conditions (22 on I'. for w®, which writes explicitly

w0|P:1 = \/Tt2u9r|7"t2’
8pw0|p:1 =0.

By taking p =1 in (7)) and by comparing them with (68), we get

’U,(i|rt2 = u9r|7“t2 = 0

RR n° 8556
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22 Houssem Haddar , Zizian Jiang

Therefore, at order 0, the approximate transmission conditions 25 for u) on I';, becomes
Dirichlet boundary conditions

2o u’ =ul =0. (70)
These conditions model the conductive deposit as a perfect conductor.
2. Order n = 1.
The Cauchy problem for w! writes
(02 + k3)w' = —Byw’ =0 pel0,1],
w'|pmo = \/Eul_h@,

1 1 .
Outlo = = (=50, + 220, )

th

where the initial values are just the transmission conditions ([22) on I';,. Thus we have

1 1 He Sin(kgp)
1 _ 1 - k 0 ) 0
w VTt U | to COS( 2p> + . 7—2’11,_ + —t 0, (TU_)

—_— 1
22 )

Tty

1 1 c
dow' = —/rul |y, ko sin(kap) + <§u0 + M_ar(ruo))

cos(kep). (71b)

NGS e Ty
Otherwise, the transmission conditions ([22) on I'. for w® write
1 1
1 1 0 0
=1 = / Tto o — T —ar T 72
w |P71 rt2u+| to 2\/Eu+| to + \/E (TU+)| to ( a‘)
1 1 pn
Swt|,eg = ———ul |, + —228,(ru?)|, 72b
P |P 1 2\/E +| to \/E,Uu ( +)| to ( )
Taking p = 1 in (7)) and considering ([72)) imply
1 sin(ks) pe 1
cos(ko)ut + —Mu—&(rug) =ul + —0,(rul), (73a)
Tty k2o Tty
. 1 cos(ka) e 0 1 1 pe 0
—sin(ky)ul + ——"2229 (ru2) = — =220, (ru?). 73b
(rayut + ) () = e ) (731)

So from (73) we obtain the first order approximate transmission conditions between u‘si on I'y,

0 sin(k2) pe )
cos(ka)u’ + —Mu—&(ru‘i) =’ + —0,(rul), (74a)
Tty k2 it Tty
R B (VS WIS (74)
—sin(ko)u’ + ———20,(ru?) = — —=—=0,.(rul).
’ Tty k2 Tty K2 fio -
3. Order n =2.

With the transmission conditions (22) for w? on I'y, as initial values, the Cauchy problem for

w? writes

(05 + EHw? = —Byw' — Bsw® = /14, (i — 822) u(l|”2 cos(kap) p €10,1],

4r?,
2 _ 2
w |P:0 Y rt2u7|7“t2’

1 1 0
2 _ 1 c 1
8,,11) |p:0 = . <§u|n2 + Ear(ru”’l“@) )
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Using the computing algorithm for m = 2 described in Section B2, in particular the formula

(286]), one obtains

1—e?k2 — ik 3
w?|pm1 = (Vrpu? + —22./%52 (02 — —)u’ cos(ka)
8k3 4rs "
1 1, e L i(1 — ei2k2 —i2ky) s 3. sin(kz)
—= —Or(ru’) | — VT, (07 — —5)u’
- {J—rtz ( gU= ol )) 8ks a0~ gl k2
isinks = ielh2 s 3.
0: —— - 75
(S + ) Vi@ = (750)
1 —ei2k2 —i2k 3
8pw1 = — ,/TtZUQ_ + #\/7}2 (83 — —2)’[1,(1 kQ Sin(kg)
8k3 4rs re,
1 1, e 1 i(1 — el2k2 — i2ky) s 3.9
_ 2o (rut) ) — (0% — 20 k
+ {,/rtZ < TR ,uta (r )) 8ks T2 (0: 4T%)u - cos(k2)
sinky  elk2 9 3. 9
_ - = s b
(T2 + ) V(@ = a0, (751)
Otherwise, the transmission conditions ([23) for w? on I'. write
WPl = T, — ik, =0y (rul)|
p= to g fre, 2\/E + 7ty \/m T + )17ty
VTt [ 52 3 0
- 9 az - % u+|7“t25 (76&)
1 1 pu
S|,y = ————ul re, + 220 (rul)),
P |p 1 2T +| o s o ( +)| to
Fe g2 3 ) 0 1 (Hc ) 0
- | —0; — — Jui|r, + ——— | — —1) 0 (rul)lr, - 76b
w(fot - )it - o= (S 1) 0 ()

From (73] and (76) we have

cos(hau? + =S () 4 o (SSle) ERER ) e 1)

T T ke 2r3, \ ko k2 ) e
—sin(ko)u” + %%ﬁa)%&(mi) T %Sm]g” b, (rul)
= e ) + g )

(77a)

(77b)

Therefore, we conclude that the second order approximate transmission conditions Z5 2 be-
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24 Houssem Haddar , Zizian Jiang

tween u%. on Ty, write

cos(kz)ul + (ism(ka) L2 (Csc(k2) - Cos(k2))) e g (ru? )

re, ko 27"?2 ko k% Lt
5 52 1 cot(ke) w
) c g
=ud + [; — 3.2 ((k2 B o — 1| 0p(rus), (78a)
ZQ 5 2 to 2
' ) § cos(ke) 62 sin(k2)\ pe s
_ ko)l i X
sin(ke)u® + <7“t2 " + 27"1:22 i3 ,Uta (ru?)

_ (ii& . ﬁi) Or(rud.). (78b)

4 Numerical tests for 1-D models

To choose the (m,n) with which the asymptotic model has a best approximation, we test numer-
ically the asymptotic models by implementing the transmission conditions Z,, ,, for m =0, 1,2
and n = 0,1,2 in the 1-D case, i.e. 9, = 0. The advantage of using 1-D eddy current models
is that they have analytic solutions, which allows us to estimate modeling errors. We write the
transmission conditions Z,, o for m = 0,1,2 at order n = 2 in a general form

{ aful + B0, (ru’ ) = 7"l + 00, (rul), (79

aful + Bro,.(ru’) = %"ui + n?@r(rui).

The transmission conditions Z,, ,, at order n = 0,1 can be derived from Z,, 2 by neglecting the
high order terms. We give the coefficients o7, 37", 77" and n}*, m =0,1,2, j = 1,2 as below.

1. m=0.

From Z o given by (@), we have

a0:1_52k_3 aO:—6k2+62k—8
1 2 ’ 2 0 27,t2’
1 e 1 1 k2 e
ﬂ?: _& 52—2&5 ﬂg:_&752—0&5
Tiy Mt 2ri, Tty [bt 21y, it
n=1 72 =0,
1 1 1
7’]?:6_"'62 2 773:_&
Tty 27’t2 Tty Mo

One gets easily the coefficients corresponding to 2o (see [B3)) by considering only the terms
on order O(1) of 4, and those corresponding to Zy1 (see (#Il)) by neglecting the terms on order
0(5?%).

2. m=1.
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Validity of some asymptotic models for highly conducting thin deposits 25

The transmission conditions Z; o given by (63) yields

k2 k2 k4 k2 k3 2k2 k3 ES
1 1 2 1 1 1 2 1 1 2 1 1 1
=1-6— -6 — — — =—k 0|l —+—= -6 —= —
“ 2 <67°t2 24) ’ 2 1 (m«tz % > (3@2 T, T 120) ’
d 1 k2 O\ e 1 k2 ki ki He
61:(_—"62—_ 1 )_’ ﬁlz(——5—+52—+ £
1 Tty (27’t22 674, ) Lt 2 Tty 21y, (2Tt22 247y, ) Lt
m=1, 75 =0,
1 1 1 p
1 2 1 c
=0— +6"— = ——.
Ui T, + 2rt22 ) Up) ey fho

For Z, o given by (54), one needs only to take the terms on order O(1) of ¢ in the above
coefficients. For Z; 1 (see (60)), we neglect the terms on order O(4?).

3. m=2.

The transmission conditions 25 » (78) yield

oF = cos(ks), aj = —sin(ky),
5 (i sin ko 5_2(csc(k2) cos(kg))> He 5 (i cos(ka) ﬁsin(kzg)) He

1 Te, ko 27"?2 ko k% e 2 T, ko 27’%2 k% e
"n=1 7% =0,

1 1 1 cot(ka)y pe ) 1 1 pe 11
2 2 2 2
=0— -6 —|(—-—=)—-1), =0——— 45— —.

n Tty 27’%2 ((kzg ko )uv 2 Tey K2 Ly 27’%2 ko

We observe that terms on order O(1) of § in the above coefficients gives the transmission con-
ditions Z3 (see ([T0)). If we consider additionally the terms on O(d), then we obtains the
transmission conditions Z5 1 (see (74)).

With these approximate transmission conditions Z,, ,, we build the 1-D asymptotic models
by supposing that there is no variation in the axial (z) direction. We may introduce a Dirac
distribution like applied electric current J§,, at r = rs, which yields the transmission conditions

at r =rg,
:0,

0 .
o (ru)] . = —lwp.

=
ﬁl»—t_“

|

The analytic solution of the full 1-D model writes

c1r 0<r<rs,
c2T+03; Ts < T <tq,
u(r) = ¢ cqdq(ker) + Y1 (ker) Ty < T < Ty,
cgJ1(ker) + c7Yr(ker) Ti, <17 < T4, +0,

1
cg— r>ry + 0,

r

with k:t2 = iwuor and kf = iWOe.
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With the transmission conditions [u] = [~ 10,.(ru)] = 0 at r = ry,, 74, and ry, +6, the coefficients
c=(c1,...,c8)T can be obtained by resolving a linear system

Ac = (0, —iwpJ,0,...,0)T

and
rs —Ts —i- 0 0 0 0 0
2 =2 0 0 0 0 0 0
0 Tty i 71]1(]%7",51) 7Y1 (kﬂ’tl) 0 0 0
0 2 0 _ kedo(kerey)  kieYo(kere,) 0 0 0
A= Ho Ht Ht
0 0 0 Jilkers,)  Yi(kers,) —J1(kert,) =Y (kere,) 0
0 0 0 ksJo(k3riy) k3Yo(k3rey) _ kedo(kersy) _ keYo(kerey) 0
Kt e He He
0 0 0 0 0 Ji(ke(re, +0)) Yi(ke(re, +0) 555
0 0 0 0 0 Eedo(ke(ripg+8))  keYo(ke(riy+0)) 0
1224 He
The analytic solution of the asymptotic models is in the form
5
cr 0<r<rs,
s Ui: CgT‘FCgl Ts <T<t1,
T
u’(r) =
) STy (k) + Y7 (ker) Ty < T < Ty,
1
ui = cg— > T,
With the transmission conditions [u] = [p~10.(ru)] = 0 at » = r;, and the approximate
transmission conditions Z,,, () at r = r,, we obtain a linear system for the coefficients
S =(c,....e)T
A%c® = (0, —iwpJ,0,...,0)7,
where
e —Ts —i 0 0 0
2 =2 0 0 0 0
s 0 Tty % 7[]1(]%7}1) 7Y1 (kﬂ’tl) 0
A’ = 0 #_21} 0 77%-]021?”1) 71€tY0§ir,Tt1) 0
0 0 0 afJiker,) + B keJo(kere,) o' Yi(kere,) + B kYo (kere,) =15
0 0 0 afJikers,) + B8 keJo(kere,)  of'Yi(kere,) + B3 keYo(kere,) =787

4.1 Tests with fixed re-scaled conductivities

We first fix the re-scaled conductivities of the thin layer deposits o,,, m = 0,1,2. Ignoring the
physical unities, we take in our tests

o0 =5 x 109,
o1 = 1 x 103,
os =5 x 107%
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Then we evaluate the relative errors of the asymptotic models using Z,, , (n = 0,1,2) approx-
imate transmission conditions with respect to the full model. We remark that here the deposit
conductivity in the full model is variable according to the layer thickness d:
Om
Oc = 5_7”
We also recall that the permeability of the deposit is u. = ., the conductivity of tube o; =
9.7 x 10°S/m and the permeability of tube 1y = 1.01p,.

Figure 2 shows the relative errors in L?, -norm of solutions for the field outside the tube ud of
the asymptotic models with respect to the full model for fixed re-scaled conductivities o,,, m =
0,1, 2. One observes that for a given re-scaling parameter m, the asymptotic models approximate
better the full model as the asymptotic expansion order n increases. The slopes given in the figure
validate numerically the above asymptotic models using approximate transmission conditions
Z,.n with the corresponding orders of approximation.

4.2 Tests with real deposit conductivity

We consider a thin layer of copper covering the tube with constant thickness. The conductivity
of copper is o, = 5.8 X 107S/m and its permeability is g, = p,. oy and p are the same as in
the previous tests. We vary the thickness § from 5um to 200um and evaluate the differences
between the solutions u® of the asymptotic models with the solution u of the full model.

Figure Bl shows that with a given re-scaling parameter m = 0, 1,or 2, the approximation
gets better as the asymptotic expansion order n increases. One observes in Figure [Bd that for
a layer thickness under 200pum, the asymptotic model using the transmission conditions Z5 g is
not a good approximation. This is because the Z5 ¢ conditions model the thin layer as perfect
conductor, which is not true for copper through which the electrical field can still penetrate.

From the comparisons shown in Figure [ we can conclude that for the asymptotic develop-
ment order n = 2, the asymptotic model using the approximate transmission conditions Z5 5 is
the best approximation of the full model among the three choices of the re-scaling parameter
m = 0,1,2. However, we remark that in the corresponding coefficients o3, 57,77 and 3, j = 1,2,
the layer thickness §, which we would like to reconstruct in the inverse problem, appears not
only as polynomial factors but also implicitly in the trigonometric terms sin(ke) and cos(kz),
now that k3 = iwp.o2 = iwp.0.0%. Hence it will be difficult to deduce the inverse problems from
direct asymptotic models using 2 o.

Meanwhile, one observes that the asymptotic models using Z; ,, are good approximations of
the full model. For instance, if we choose a threshold of 1% relative error to judge whether an
asymptotic model is accurate, then one observes in Figure BB that even the asymptotic model
using Z; o gives a good approximation for thickness § under 50um, which covers already a large
range of interested thickness in industrial practice (see Table [d]). The asymptotic model using
Z1 1 ameliorates the precision for the full range of interested thickness (say, § < 150um). With
m = 1, the layer thickness § appears only as polynomial factors in the coefficients oa}, ﬂjl, 'y} and
77]1», 7 =1,2, which facilitate the deduction of inverse method for the reconstruction of thickness.

Therefore, we will focus on the asymptotic models using Z; , with n = 0,1 in the following
discussion.
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